Agile Measurement Zen

2010-10-28

RALLY SOFTWARE

(Y
AGILE

MEASUREMENT

¥ MACCHERONE

LMaccherone@RallyDev.com

-Tf—"" o fb”g b

ot

e ENER f_ :

M \ .7 7 = "

S T
@L\\\\\\ 8 =
A T\ (R,
Adobe §INELIT o8

Agile Measurement Zen 2010-10-28

OPPORTUNITY
BURNS AWAY OVER TIME

BUCKET BRIGADE GAME

Which is faster?
Bucket line
Bucket runner

Agile Measurement Zen 2010-10-28

WHAT DID WE
LEARN?

Our intuition is often wrong.

Measuring is frequently the only way to decide
on the best alternative and change beliefs.

Coordination matters.

BUCKET BRIGADE

ROUND 2 w

Agile Measurement Zen

wHAT NEW bip
WE LEARN?

Only use industry studies as a starting point.

DO YOU OWN MEASUREMENT.

Context matters.

AGILE IS...

Measured System

Reference + error input

System

System output

Controller >
Measured output

Sensor

-
»

emphasis and frequency

verbal information transfer

Cultural values

A set of feedback loops with appropriate

Appropriate valuing of tacit knowledge and

2010-10-28

Agile Measurement Zen 2010-10-28

FEEDBACK EMPHASIS

TRADITIONAL AGILE

MANUFACTURING ENGINEERING AND

SWEET SPOT Il DEVELOPMENT

FREQUENT, FORMAL
PROCESS ' ’
AND CAN BE HEAVY LIGHT BUT OFTEN

FEEDBACK WEIGHT

PRODUCT AND EARLY, OFTEN, AND
DESIGN 3 CLOSE TO THE
FEEDBACK CUSTOMER

PLAN FEEDBACK LONGER-TERM FRACTILE

CULTURE STRUCTURED COLLABORATIVE

BASIC ASSUMPTION

Better insight = Better decisions = Better outcomes
How to get better insight?

Documented knowledge Tacit knowledge
Quantitative insight Qualitative insight
Organization Team

Advantages: Advantages:
* Precision * Lower costs
* Counter folk lore or overcome faulty * Greater agility
intuition * Takes particular situation into account
* Motivate us to do what we should, over
what we want

Agile Measurement Zen 2010-10-28

IMPLICATIONS FOR
AGILE MEASUREMENT

1. Product measures matter more

2. Must compliment (rather than attempt to
replace) tacit knowledge and verbal
information transfer so visualization and
interaction is critical

. Team-level measurement more important

4. Passive data collection because culture will
not tolerate more

5 “STANDARD”
OUTCOME MEASURES

1. Cycle time for features (user stories)

. Cycle time for defects

3. Productivity =
size / (schedule * man-hours)

. Defect density
. Schedule deviation (predictability)
Trending as important as level

Agile Measurement Zen 2010-10-28

FROM WHERE?

The data passively gathered in ALM tools like Rally
can be leveraged to calculate these measures.

Nuance depends upon:
— Task breakdown and measured in hours?
— Hours remaining updated daily mid-sprint?
— Actual hours for tasks recorded after-the-fact? (or
some other form of estimated versus actual)

— Integrations:
* Defect data traceable?
* Source code repository linked?
* Build data available?

Agile Measurement Zen 2010-10-28

DON'T LET YOUR
AGILE MEASUREMENT OPPORTUNITY
BURN AWAY

Agile Measurement Zen

VISUALIZATION

Example cone of uncertainty

End of First Iteration

End of Second Iteration

End of Third Iteration

End of Fourth Iteration
End of Fifth Iteration

Must Have

First Story
Second Story
Third Story.

Fourth Story
Fifth Story

Should Have

Seventh Story.

Eighth Story
Ninth Story.
Tenth story

Eleventh Story
12" story
13 story,
14 story

T~

Could Have

157 Story,
16 story.

17* story
18" story

19 tory.

20* story
21 Story

Theme 1
Theme 2
Theme 3

Current Date

Actual

= Projected

2010-10-28

Agile Measurement Zen

Example

Patterns

“.v-.\' * Stephen worked on literally
P YA, every file
‘. Stephen Walther

Lack of structure in file
dependency

Severity: | Enhancement [V] Trivial (V] Minor [¥] Normal |¥] Major | Critical | Blocker M L|tt|e Cross communication
100 * Everincreasing number of issues
1] —————— . .
— —— —_— ——— — * Very different pattern in later
. time frame
|
@
@
i Do
X Alicia Dimaggio

o

Severity: | Enhancemen t [V] Trivial [¥] Minor [¥] Normal |[¥] Major || Critical || Blocker

160 | N——

0

DON'T LET YOUR
AGILE MEASUREMENT OPPORTUNITY
BURN AWAY

2010-10-28

10

Agile Measurement Zen 2010-10-28

Example team decisions

Should we do inspection? Should we do test driven
development (TDD)? How much of each and in what
combinations should we do?

Should we live with a code base that has accumulated
significant technical debt or should we refactor it? Or
re-write it from scratch?

Is geographical distribution going to cause high levels
of defects? What can be done to mitigate this?

What changes in architecture and team structure lead
to minimal effort wasted on coordination?

What should we do next?
To what completion date should we commit?

Example exploratory data analysis

* Scenario
— Team at Intuit recently started Scrum
— Just finished 7t sprint (1 sprint = 1 month)
— Velocity has slowed considerably
— Will miss commitment unless velocity picks up
— Code has accumulated technical debt

e Can we afford to refactor?

 Start by looking at data passively gathered in
source code repository

11

Agile Measurement Zen

(]
©
o
o
Y—
o
(%]
(<]
(=
—

2010-10-28

Project data

== Added

Deleted
Churn
Net Added

=¥=Velocity * 50

= Anomaly in 5t
iteration

= That’s when the Ul
sub-team did a
refactoring

Velocity correlates
with Net Added LOC
(RA2 =0.75)

Ul sub-team

Head first design patterns
book reading group

Refactored to apply what 100
they learned 800
Code more “enjoyable” but

was the refactoring worth it? 4o
Will it be worth it to refactor = 200
the rest of the code in 0
iteration 8?

Net Added for Ul Sub-team

12

Agile Measurement Zen

What to take away from example
(and not take away)

Had to make a decision
Was probably better to make it with some data than
with none

Used tacit knowledge

Found their own pattern/predictive relationship

If we can make it easy for teams to do this on their own
and iterate rapidly, they are likely to find useful
measures

What not to take away:

— General correlation between net added and velocity

— That my research is focused on finding general predictive
relationships (although it may very do that)

2010-10-28

13

