

1

Mature Agile with a twist of CMMI

Carsten Ruseng Jakobsen
Systematic Software Engineering

crj@systematic.dk

 Kent Aaron Johnson
AgileDigm, Incorporated

kent.johnson@agiledigm.com

Abstract

Systematic is an agile company working at CMMI

level 5, where the default way of working is based on
Scrum and story based early testing development. Solid
experiences in combining CMMI with Scrum and story
based development, has shown that the mix provides
strong synergies [2] and insights into what CMMI
practices fit and amplify the execution of Scrum and
story based early testing development

This paper presents specifically how agile
methods like Scrum are successfully combined with
CMMI. CMMI provides solid support for what
disciplines to consider. When applied the disciplines
create a focus on important aspects of agile methods
that perhaps are not normally elaborated, for example
how to ensure a proper quality of a product backlog or
how to ensure a proper “production line” for the
project. This guidance may not be needed for small
agile projects, but as the agile movement continues to
grow, and is used for larger and more complex
projects, agile projects will need to address these
issues related to increased size and complexity.

The experiences from combining CMMI and
Scrum have led Systematic to identify examples of
explicit guidance from CMMI that help to execute
normal Scrum activities even better.

These activities can be implemented in the spirit of
the agile manifesto and principles and by doing so
agile methods can be augmented and matured to
ensure that even larger and more complex projects in
the future can and will benefit from agile - with a twist
of CMMI.

1. Introduction

This paper presents the experiences on how
CMMI amplifies Agile and recommends a subset of
activities an agile project could adopt from CMMI to
improve performance. Agile purists and small agile
projects may find these activities non-agile or counter-
productive; however in larger and/or distributed
projects these activities will prove to be invaluable.

The paper does not describe how to mature an
organization from CMMI level 1 to CMMI level 2, but

the activities described could be part of such a change.
Rather this paper highlights a set of activities that could be
considered the glue between agile only projects based on
Scrum and the disciplines expected from projects and
organizations working toward CMMI level 2 or 3.

This paper presents how “a twist of CMMI” can help
establish a more solid framework for agile projects to
support even more complex projects by adopting some of
the practices from the CMMI.

2. Context for the experiences

Systematic was established in 1985 and employs more
than 450 people worldwide with offices in Denmark,
Finland, USA and the UK. It is an independent software
and systems company focusing on complex and critical IT
solutions within information and communication systems.
Often these systems are mission critical with high
demands on reliability, safety, accuracy and usability.

Customers are typically professional IT-departments
in public institutions and large companies with
longstanding experience in acquiring complex software
and systems. Solutions developed by Systematic are used
by tens of thousands of people in the defense, healthcare,
manufacturing, and service industries. Systematic was
appraised 11 November 2005 using the SCAMPISM
method and found to be CMMI level 5 compliant. During
2006 Systematic adopted Scrum and a story based early
testing approach to software development.

CMMI provides insight into what processes are
needed to maintain a disciplined mature organization
capable of predicting and improving performance of the
organization and projects. Scrum provides guidance for
efficient management of projects in a way that allows for
high flexibility and adaptability. When mixing the two, a
magic potion emerges, where the mindset from Scrum
ensures that processes are implemented efficiently while
embracing change, and CMMI ensures that all relevant
processes are considered with proper discipline.

Individually CMMI and Scrum has proven benefits,
but also pitfalls. An agile company may implement Scrum

SM Capability Maturity Model Integration, and SCAMPI
are service marks of Carnegie Mellon University

2

correctly, but fail to obtain real benefits due to lack of
consistent and sufficient execution of engineering or
management processes. CMMI can help agile
companies to institutionalize agile methods more
consistently and understand what processes to address.

A company can comply with CMMI, but fail to
reach optimal performance due to inadequate
implementation of processes. Scrum and other agile
methods can guide such companies towards more
efficient implementation of CMMI process
requirements.

Systematic has gained valuable experiences in
combining Scrum and CMMI that are relevant both for
projects in a CMMI and agile context.

3. Experiences from mixing

The first major experience from working with Scrum
in a CMMI context is that CMMI embraces Scrum.
CMMI has more practices and support for initial
project planning and for final delivery and project
closure. In Scrum terms, CMMI suggests activities
before and after sprints are executed on the product
backlog.

From a CMMI perspective, the initial Scrum
product backlog is created during project planning and
during project execution; sprints are executed and the
product backlog is updated. This logically splits
planning into two parts: overall CMMI project
planning and detailed agile planning through Scrum.

This separation has led to overall planning where
work is planned in sufficient detail as opposed to a
complete decomposition. The overall planning
produces a set of overall project plans and a Scrum
product backlog where a complete list of prioritized
features or work for the project is managed.

The primary change to project execution
processes, was to integrate Scrum as the method for
completing small iterations (sprints), on a selected
subset of the work with highest priority.

Systematic experience indicates that this mix of
CMMI, Scrum, and agile is beneficial, because

• CMMI planning can be considered a kind of

disciplined sprint zero, where it is ensured
that an optimal framework for the project is
established, including a high quality product
backlog, a production line definition, and
well known targets and vision for the project
as a whole.

• CMMI risk management proactively
addresses possible impediments before they
are encountered by the team.

• CMMI quality planning specifies more accurately
and efficiently the quality targets of the project
and helps developers to a better interpretation of
completion criteria and sprint goals.

• CMMI will ensure that the project is tracked as a
whole allowing the Scrum Team to concentrate
on current sprint, knowing that they periodically
are informed of overall project status.

• Scrum requires discipline regarding automatic
test, a nightly build, and integration. CMMI
supports this need for discipline and has led some
projects at Systematic to monitor “fix-time after
failed builds” for more than a year. The measure
has proven to be cheap to establish, easy to
understand, and therefore facilitating good habits.

• CMMI expects the project to seek objective
measures of performance of the project’s
processes. In Scrum progress (of sprints) is
primarily measured through the sprint burn down
chart and the sprint review meeting. The project
manager tracks the project as a whole based on
selected measures within key areas like, product
size, earned value, schedule, and quality. CMMI
project planning provides good overall plans for
the complete project where each completed sprint
is very valuable input.

• CMMI ensures that agile methods are
institutionalized, including

o Consistent implementation throughout
the organization and continuous
improvement, e.g. Systematic Scrum
Guidelines, story inspection checklist.

o Role based training of all roles, e.g.
Scrum Master and Product Owner.

When Systematic adopted Scrum, the roles Scrum

Master, Product Owner, and Team were introduced. Most
projects in Systematic have a person who communicates
and understands the customer. In Systematic this person is
appointed the role Product Owner. In our experience the
Product Owner is often also the Project Manager, but
could also be Software Architect, or User Experience
Engineer. The Scrum Masters are in most cases equivalent
with the team leader roles in Systematic. Projects in
Systematic are staffed with people working full time on
the project and the team is co-located.

3.1. How to establish a better initial product
backlog

Experience. Project Planning in CMMI is a disciplined
and comprehensive Sprint Zero.

3

In order to run a good Scrum, it is vital to have
good product backlog. When Systematic adopted
Scrum, the project planning process was updated to
produce an initial product backlog. Expected CMMI
practices include decomposition of work into
manageable pieces that are estimated and analyzed for
dependencies, planning of stakeholder involvement,
and total project risk assessment.

In addition to the product backlog a set of overall
project plans are established. Agile teams talk about a
sprint zero to establish the foundation for the team to
do efficient sprinting. Project Planning in CMMI can
be perceived as a sprint zero to produce a coherent set
of plans, that will help improve execution of the
product backlog. Such plans cover topics like,
stakeholder management, milestone and delivery
schedules, cost estimates, and quality.

The initial version of these plans are typically
established within few weeks after project initiation
and will focus on the most certain elements of the
projects plan, leaving more uncertain parts to be
managed on the product backlog.

Figure 1 shows the main activities performed to
establish the project plan. The sequence shown in the
figure is advisory. The same activity may be performed
multiple times, and often many activities are performed
simultaneously. Each of the activities are supported by
short step-wise descriptions of how the activity
normally is performed, what inputs are required and
what output are produced.

The descriptions are based on lessons learned and
best practices from all projects within Systematic, and
are organized with short outlined descriptions at the
top, and detailed guidelines and templates at the
bottom.

This provides the team with solid support for
establishing the projects plans. The amount of time
spent to establish project plans varies from project to
project, but for most projects, initial project planning
can be completed within weeks. One of the reasons for
this is the handling of uncertain scope through Scrum
combined with proper risk management from CMMI.

Concurrent to the initial planning, the overall
solution architecture and product quality objectives are
elaborated and documented by software architects and
lead developers.

Before the project moves from planning (sprint
zero) to project execution (sprinting) the project
manager validates that the overall project objectives
and plans are achievable and realistic, and that
planning has reduced project risks sufficiently.

Many of the activities in figure 1 are in line with
the intensions of Scrum, the main difference is that in
CMMI these activities are elaborated and documented.

[Project Plan Approved]

[Project Approved]

Project Manager

Plan Risk
Response

Define
Scope

[Project Scope and Objectives Approved]

Create WBS

Estimate
Cost

Create Product
Backlog

Plan
Organization

Plan
Quality

Plan Risk
Management

Develop
Schedule

Budget
Cost

Identify
Stakeholders

Plan
Communications

Analyse Risks
Quantitatively

Analyse Risks
Qualitatively

Identify
Risks

Release
Project Plan

Develop Project
Management Strategy

Develop
Process

Plan
Measurement

Establish Change
Management

Establish Configu-
ration Management

Plan Purchase
and Acqusition

Plan
Contracting

Identify
Configuration Items

Plan
Process

Plan Milestones
and Deliveries

Figure 1 Overview of CMMI planning activities

Experience. Two levels of planning and tracking: Project
as a whole and each sprint.

Sprinting on the product backlog is started, when the
project plans and solution architecture are approved by
senior management.

From this point tracking of the project is done at two
different levels concurrently. The project manager tracks
the projects overall plans and team(s) tracks progress of
active sprint(s).

The plans established with planning activities
provides a better context for defining sprint visions and
goals, compared to projects only using a Sprint backlog.
They also allow the team to focus on the sprint, because
they can rely on the project manager tracking the overall
progress.

4

3.2. Risks and impediments

Experience: Planning and risk management activities
reduces risk of product backlog

The first draft product backlog is assessed for risk
by the team. Asking the team to estimate the products
backlog using 3-point estimates for effort will reveal
the most uncertain parts of the work in the Product
Backlog. Conducting Risk Identification meetings will
identify other important risks, and allow proactive
mitigation to be initiated.

Experience: Risk management can proactively prevent
impediments

Scrum has a strong focus on removing
impediments as soon as they are identified, however
CMMI risk management activities focus on proactively
identify some of these impediments as risks, and
through mitigation eliminate them before they occur as
an impediment in the future.

The distinction between risk and impediment is
that risk describe a problem that may occur, whereas
an impediment is problem that has occurred and is
impacting planned progress.

Risk management activities are easily integrated
with Scrum activities. During project planning the
project plans and solution architecture are inputs for
initial identification of risks. During project execution,
bi-weekly meetings of 10-15 minutes are arranged,
where the status of known risks is reported and new
risks are identified.

It is our experience that these risk management
meetings should be kept outside the daily scrum
meeting. New risks may be reported on the daily
scrum, in which case the risk manager will just take a
note.

3.3. How to ensure high quality

Scrum is designed to produce high quality in terms of
perceived and conceptual integrity where short
iterations and sprint review customers are main drivers
for high quality.

Experience: Explicit quality plans improves helps the
team to build the right quality in

One of the results of planning is a quality
assurance schedule (QAS), where it is outlined what
quality activities will be used to ensure the quality
objectives are achieved. The QAS may specify

• What stories are subject to inspection

• What code is subject to review
• What documents are subject to what types of

review
• What unit test and automatic test is produced
• What is included in the acceptance test

A typical QAS document is only a few pages long,
but the above descriptions can help a scrum team to
elaborate and understand the definition of done.

Experiece: Use checklist to ensure quality of stories
One of the important aspects of Systematic story based
development method was to ensure focus on early test.

Figure 2 Story inspection checklist

5

The quality of stories are generally ensured by
focus on early specification of test and by getting
somebody else to look at the work done.

Developing a story includes many different
activities, that need to be structured to some degree.

The Story Completion Checklist accomplishes
these goals, by structuring activities and defining when
work must be inspected by an inspector.

The activities in the checklist all have a short 5-10
line description in a procedure called “Execute story”,
that clarifies why and how the activity is performed.

The inspector role is often appointed to a lead
developer, and this way the inspection also serves as an
opportunity for knowledge sharing between
experienced and less experienced developers.

The Story Completion Checklist ensures quality at
the story level and makes it easier for the developer at
the same time.

3.4. Test, integration, release and
configurations management

Scrum promotes short iterations, e.g. one sprint per
month, and this in turn drives the need for efficient
configuration management, test, integration and
release.

CMMI helps with:

• Establish standards for production line,
including standard setups for build- and test
servers

• Establish discipline on criteria for integration
• Measures to objectively evaluate performance
• Disciplines to maintain integrity of

configuration management system, builds,
and releases.

Experience: Automated test is a must in order to do
one month sprints

When the sprint duration is one month, all tests
must be automated to the extent possible. It is an
integrated part of developing a story, to also implement
the automated test verifying the story. Automated test
are used on the teams shared repository and run every
time a developer commits code to the shared build
server.

Experience: Automated test and integration must be
supported by a standard production line

Every project needs this infrastructure and
therefore we have established standard production line
setups, allowing projects to get started faster.

Experience: Continuous integration must be supported
with discipline for check in

In order to avoid chaos when developers continuously
integrate with each other, we have defined the following
criteria for check in of code to the integration repository:
The test must run smoothly in the developers sandbox and
the code must comply with the code standard checked
with FxCop (a static code analysis tool).

Experience: Focus on “fix-time after failed build” drives
good discipline in project

Using standard infrastructure setups allows for
efficient data collection and analysis. In particular
Systematic has been inspired from Lean thoughts on flow
and jidoka (stopping the production line when an error is
detected).

We want our projects to be able to deliver on a daily
basis, and hence that unresolved failed builds are fixed
within a working day. We use CruiseControl (a build
management tool) to signal all developers when a build
fails. We also monitor the objective by analyzing data
from the build servers using control charts like the one
shown below.

Fix time after failed build

0,00

2,00

4,00

6,00

8,00

10,00

12,00

23
3

23
8

24
3

24
8

25
3

25
8

26
3

26
8

27
3

27
8

28
3

28
8

29
3

29
8

30
3

30
8

31
3

31
8

32
3

32
8

Build ID

Ho
ur

s

Fix Time (Hours) LCL of avg fix time Avg fix time UCL of avg fix time

Many projects have achieved this one work day

objective, merely by the focus on the measure. The
objective is easy to understand, and presenting the
information in CruiseControl and control charts has
established a good habit of fixing broken builds
immediately when they fail.

Experience: Periodic audit of Configuration Management
system builds good habits

As part of every sprint delivery a work product
evaluation (WPE) is conducted and for every delivery to
the customer a functional configuration audit (FCA) is
conducted. The purpose is to ensure that the build product
is correct and complete.

WPE and FCA are executed and documented by
filling out check-lists that helps to ensure that

6

configuration management activities has been executed
correctly for the build or release. Usually these
activities can be accomplished within one or two
hours.

The experience is that this checking of the
configuration management system on a monthly basis,
builds good habits on the team to remember
configuration management disciplines, and as a result
builds and releases are complete and correct, and may
be re-created in the future should the need arise.

4. Agile with a twist of CMMI

In [2], [3] we described how the generic practices
from CMMI can be used to institutionalize Scrum in
your organization. In the following we present our
recommendations to activities an agile project could
consider adopting. These activities are inspired by the
mandatory goals and expected practices from a subset
of CMMI process areas.

We recommend the following activities to agile
projects:

1. Establish your own sprint zero, and include
activities in item 2-6 below in it.

2. Use Risk Management to proactively address
risks before they are identified as impediments

3. Decompose requirements into features on the
product backlog. Prepare the product backlog
by decomposing the highest prioritized
features to stories allowing for efficient sprint
planning. (This defines what you are really
going to do.)

4. Use 3-point effort estimates on elements of the
product backlog during initial planning.

5. Analyze dependencies, stakeholders, risk on
elements of product backlog.

6. Establish milestone and delivery plan and their
initial relationship to product backlog.

7. Use Story Completion Checklist to maintain
high quality of stories produced.

8. Decide and communicate quality objectives
including, what code and documentation to
formally review to elaborate definition of
done.

9. Establish standards for project “production
line” including development, build servers, and
test servers.

10. Automate test and nightly build, and measure
performance.

11. Establish criteria for committing of code to
integration.

12. Maintain integrity of configuration
management, by using a checklist for Work

Product Evaluation and execute it by the end of
each sprint.

5. Conclusion

This paper presented a few practical advices for agile
projects on additional activities to adopt particularly in
larger or distributed projects.

Our recommendation to the Agile community is to
extend agile methods inspired from an understanding of
the mandatory goals and expected practices for CMMI
level 2 and 3. These practices make good sense, and you
could argue that it has always inherently been expected as
part of your agile method. In general the CMMI model
provides a good understanding what practices to consider
– but you will have to adopt it to your context, and find
agile implementations for the practices.

When projects grow, we believe you need more
discipline. We have described how a more disciplined
sprint zero, risk management, and various checklists with
minimal effort can bring you slightly more discipline into
your project – and we believe that doing so will bring
success to larger or distributed agile projects.

6. References

[1] M. Poppendieck and T. Poppendieck, Lean Software
Development: An Implementation Guide: Addison-Wesley,
2006.

[2] J. Sutherland, C.R. Jakobsen and K.A. Johnson, "CMMI and
Scrum - a magic potion for code warriors" in proceedings
for Agile 2007

[3] M. K. Kulpa and K. A. Johnson, Interpreting the CMMI: A
Process Improvement Approach, Second Edition. Boca
Raton: Auerbach Publications, 2008

