

Distributed Scrum: Agile Project Management with Outsourced Development

Teams

 Jeff Sutherland, Ph.D. Anton Viktorov Jack Blount Nikolai Puntikov
 Patientkeeper StarSoft Dev. Labs SirsiDynix StarSoft Dev. Labs
 Newton, MA, US St. Petersburg, Russia Provo, UT, USA St. Petersburg, Russia

jeff.sutherland@computer.org anton.viktorov@starsoftlabs.com jack@dynix.com nick@starsoftlabs.com

Abstract

Agile project management with Scrum derives from
best business practices in companies like Fuji-Xerox,
Honda, Canon, and Toyota. Toyota routinely achieves
four times the productivity and 12 times the quality of
competitors. Can Scrum do the same for globally
distributed teams? Two Agile companies, SirsiDynix and
StarSoft Development Laboratories achieved comparable
performance developing a Java application with over
1,000,000 lines of code. During 2005, a distributed team
of 56 Scrum developers working from Provo, Utah;
Waterloo, Canada; and St. Petersburg, Russia, delivered
671,688 lines of production Java code. At 15.3 function
points per developer/month, this is the most productive
Java project ever documented. SirsiDynix best practices
are similar to those observed on distributed Scrum teams
at IDX Systems, radically different than those promoted
by PMBOK, and counterintuitive to practices advocated
by the Scrum Alliance. This paper analyzes and
recommends best practices for globally distributed Agile
teams.

1. Introduction
Scrum is an Agile software development process designed
to add energy, focus, clarity, and transparency to project
teams developing software systems. It leverages artificial
life research [12] by allowing teams to operate close to the
edge of chaos to foster rapid system evolution. It
capitalizes on robot subsumption architectures [5] by
enforcing a simple set of rules that allows rapid self-
organization of software teams to produce systems with
evolving architectures. A properly implemented Scrum will
increase speed of development, align individual and
organization objectives, create a culture driven by
performance, support shareholder value creation, achieve
stable and consistent communication of performance at all
levels, and enhance individual development and quality of
life.

Scrum for software development teams began at Easel
Corporation in 1993, where we built the first object-
oriented design and analysis (OOAD) tool that
incorporated round-trip engineering. In a Smalltalk
development environment, code was auto-generated from a
graphic design tool and changes to the code from the
Smalltalk integrated development environment (IDE) were
immediately reflected back into design.

We needed a development process that supported
enterprise teams where visualization of design
immediately generated working code. This led to an
extensive review of the literature and dialogue with
leaders of hundreds of software development projects.
Key factors that influenced the introduction of Scrum at
Easel Corporation were fundamental problems inherent in
software development [7].
• Requirements are not fully understood before a

project begins,
• Users know what they want only after they see an

initial version of the software,
• Requirements change often during the software

construction process,
• And new tools and technologies make

implementation strategies unpredictable
“All-at-Once” models of software development

uniquely fit object-oriented implementation of software
and help resolve these challenges. They assume that
creation of software involves simultaneously working on
requirements, analysis, design, coding, and testing, then
delivering the entire system all at once.

1.1. “All-at-Once” Development Models
The simplest “All-at-Once” model is a single super-
programmer creating and delivering an application from
beginning to end. This is the fastest way to deliver a
product that has good internal architectural consistency
and is the “hacker” model of implementation. For
example, in a predecessor to the first Scrum, one
individual spent two years writing every line of code for
the Matisse object database [15] used to drive $10B
nuclear reprocessing plants worldwide. At less than
50,000 lines of code, the nuclear engineers said it was the
fastest and most reliable database ever benchmarked for
nuclear plants.

IBM has documented a variant of this approach
called the Surgical Team as the most productive software
development process [4]. The Surgical Team approach
has a fatal flaw in that there are at most one or two
individuals even in a large company that can execute this
model. For example, it took three years for a competent
team of developers to understand the conceptual elegance
of the Matisse object server well enough to maintain it.
The single-programmer model does not scale well to large
projects.

The next level of “All-at-Once” development is
handcuffing two programmers together, as in pair
programming in the eXtreme Programming paradigm [2].
Here, two developers working at the same terminal
deliver a component of the system together. This has been
shown to deliver better code (usability, maintainability,
flexibility, extendibility) faster than two developers

working individually [26]. The challenge is to achieve a
similar productivity effect with more than two people.

Scrum, a scalable, team-based “All-at-Once” model,
was motivated by the Japanese approach to team-based
new product development combined with simple rules to
enhance team self-organization as used in the Brooks
subsumption architecture [5]. At Easel, we were already
using an iterative and incremental approach to building
software [13]. Features were implemented in slices where
an entire piece of fully integrated functionality worked at
the end of an iteration. What intrigued us was Takeuchi and
Nonaka’s description of the team-building process for
setting up and managing a Scrum [24]. The idea of building
a self-empowered team in which a daily global view of the
product caused the team to self-organize seemed like the
right idea. The approach to managing the team, which had
been so successful at Honda, Canon, and Fujitsu, also
resonated with the systems thinking research by Professor
Senge at MIT [18].

1.2. Hyperproductivity in Scrum
The hyperproductive state achieved in 1993-1994 during
the first Scrum was the result of three primary factors. The
first was the Scrum process itself, characterized by 15
minute daily meetings where each person answers three
questions – what did you accomplish yesterday, what will
you do today, and what impediments are getting in your
way? This is now part of the definitive Scrum
organizational pattern [3]. Second, the team implemented
all XP engineering processes [2] including pair
programming, continuous builds, and aggressive
refactoring. And third, the team systematically stimulated
rapid evolution of the software system. Development tasks,
originally planned to take days, could often be
accomplished in hours using someone else’s code as a
starting point.

One of the interesting complexity phenomena of the
first Scrum was an observed “punctuated equilibrium”
effect [9]. This occurs in biological evolution when a
species is stable for long periods of time and then
undergoes a sudden jump in capability. Dennis Hillis
simulated this effect on an early super-computer, the
Connection Machine.

“The artificial organisms in Hillis’s particular world
evolved not by steady progress of hill climbing but by the
sudden leaps of punctuated equilibrium… With artificial
organisms Hillis had the power to examine and analyze the
genotype as easily as the realized phenotypes… While the
population seemed to be resting during the periods of
equilibrium … the underlying genetic makeup was actively
evolving. The sudden increase in fitness was no more an
instant occurrence than the appearance of a newborn
indicates something springing out of nothing; the
population seemed to be gestating its next jump.

Specifically, the gene pool of the population contained a
set of epistatic genes that could not be expressed unless
all were present; otherwise the alleles for these genes
would be recessive.” [14]

A fully integrated component design environment
leads to unexpected, rapid evolution of a software system
with emergent, adaptive properties resembling the process
of punctuated equilibrium. Sudden leaps in functionality
resulted in earlier than expected delivery of software in
the first Scrum.

This aspect of self-organization is now understood as
a type of Set-Based Concurrent Engineering (SBCE)
which is practiced at Toyota [19]. Developers consider
sets of possible solutions and gradually narrow the set of
possibilities to converge on a final solution. Decisions on
how and where to implement a feature in a set of
components was delayed until the last possible moment.
The most evolved component is selected “just in time” to
absorb new functionality, resulting in minimal coding and
a more elegant architecture. Thus emergent architecture, a
core principle in all Agile processes, is not random
evolution. Properly implemented, it is an SBCE technique
viewed as a best business practice in some of the world’s
leading corporations.

2. The SirsiDynix Distributed Scrum
The hyperproductive state achieved by many Scrum
teams has increased productivity by an order of
magnitude. The question for this paper is whether a large,
distributed, outsourced team can achieve the same effect.

Many U.S., European, or Japanese companies
outsource software development to Eastern Europe,
Russia, or the Far East. Typically, remote teams operate
independently and communication problems limit
productivity. While there is a large amount of research
literature on project management, distributed
development, and outsourcing strategies as isolated
domains, there are few detailed studies of best project
management practices on large systems that are both
distributed and outsourced.

Best current Scrum practice is for local Scrum teams
at all sites to synchronize once a day via a Scrum of
Scrums meeting. Here we describe something rarely seen
on large, distributed teams. At SirsiDynix, all Scrum
teams consist of developers distributed across different
sites. Any team member from any site can work on any
team task. While some Agile companies operate in this
geographically transparent manner on a small scale,
SirsiDynix has been successful in using fully integrated
Scrum teams with over 50 developers in the U.S.,
Canada, and Russia. They have created a new
implementation of platform and system architecture for a
complex Integrated Library System (ILS). An ILS system
can best be compared to a vertical market ERP system

with a public portal interface used by more than 200
million people. New best practices for distributed Scrum
seen on this project consist of (1) daily Scrum meetings of
all developers from multiple sites, (2) daily meetings of
Product Owner team (3) hourly automated builds from one
central repository, (4) no distinction between developers at
different sites on the same team, (5) and seamless
integration of XP practices like pair programming with
Scrum. While similar practices have been implemented on
small distributed Scrum teams [21] this is the first
documented project that demonstrates Scrum
hyperproductivity for large distributed/outsourced teams
building complex enterprise systems.

3. Distributed Team Models
Here we consider three distributed Scrum models
commonly observed in practice.
1. Isolated Scrums - Teams are isolated across

geographies. In most cases off-shore teams are not
cross-functional and may not be using the Scrum
process.

2. Distributed Scrum of Scrums – Scrum teams are
isolated across geographies and integrated by a Scrum
of Scrums that means regularly across geographies.

3. Totally Integrated Scrums – Scrum teams are cross-
functional with members distributed across
geographies. In the SirsiDynix case, the Scrum of
Scrums was localized as all ScrumMasters were in
Utah.
Most outsourced development efforts use a

degenerative form of the Isolated Scrums model where
outsourced teams are not cross-functional and not Agile.
Requirements may be created in the U.S. and developed in
Dubai, or development may occur in Germany and quality
assurance in India. The authors have experienced cross-
cultural communication problems compounded by
disparities in work types in many companies around the
world where they were directly responsible for
development projects. In the worst case, outsourced teams
are not using Scrum and their productivity is typical of
inhouse waterfall projects further delayed by lag time
induced by cross-continent communications.

Figure 1: Strategies for distributed Scrum teams [25].

The latest thinking in the Project Management
Institute Guide to the Project Management Body of
Knowledge (PMBOK) models is a degenerative case of
isolated non-Scrum teams [16]. This is a spiral waterfall
methodology which layers the Unified Modeling
Language (UML) and the Rational Unified Process
(RUP) onto teams which are not cross-functional [27]. It
partitions work across teams, creates teams with silos of
expertise, and incorporates a phased approach laden with
artifacts that violate the principles of lean development
[17].

Best practice recommended by the Scrum Alliance is
a Distributed Scrum of Scrums model. This model
partitions work across cross-functional, isolated Scrum
teams while eliminating most dependencies between
teams. Scrum teams are linked by a Scrum-of-Scrums
where ScrumMasters (team leaders/project managers)
meet regularly across locations. This encourages
communication, cooperation, and cross-fertilization.

An Integrated Scrums model has all teams fully
distributed and each team has members at multiple
locations. While this appears to create communication
and coordination burdens, the daily Scrum meetings help
to break down cultural barriers and disparities in work
styles. On large enterprise implementations, it can
organize the project into a single whole with a rapidly
evolving global code base. The virtual nature of this
approach provides location transparency and can create
performance characteristics similar to a small co-located
team. A hyperproductive Web team at IDX Systems
Corporation during 1996-2000 achieved ten times the
performance of the industry average for teams of large
systems [21]. The SirsiDynix model outlined in this paper
is a good example of best practices for Integrated Scrums.
This may be the most productive distributed team ever
documented, delivering a large Java enterprise system
with more than one million lines of code.

4. SirsiDynix Case Study

4.1. SirsiDynix Background
SirsiDynix has approximately 4,000 library and consortia
clients, serving more than 200 million people through more
than 20,000 library outlets in the Americas, Europe, Africa,
the Middle East and Asia-Pacific. Jack Blount, President
and CEO of Dynix and now CTO of the merged SirsiDynix
company, negotiated an outsource agreement with StarSoft
who staffed the project with more than 20 qualified
engineers in less than 60 days. Significant development
milestones were completed in just a few weeks and all joint
development projects were efficiently tracked and continue
to be on schedule.

4.2. StarSoft Background
StarSoft Development Labs, Inc. is a software outsourcing
service provider in Russia and Eastern Europe.
Headquartered in Cambridge, Massachusetts, USA,
StarSoft operates development centers in St. Petersburg,
Russia and Dnepropetrovsk, Ukraine, employing over 450
professionals. StarSoft has experience handling
development efforts varying in size and duration from just
several engineers working for a few months to large-scale
projects involving dozens of developers and spanning over
several years. A CMM Level 3 company, StarSoft
successfully uses Agile development and particularly XP
engineering practices for the benefits of its clients.

5. Hidden Costs of Outsourcing
The hidden costs of outsourcing can be significant
beginning with startup costs. Barthelemy [1] surveyed 50
companies and found that 14% of outsourcing operations
were failures. In the remainder, costs of transitioning to a
new vendor often canceled out most of the company’s
savings from lower labor costs in other countries. The
average time from evaluating outsourcing to beginning of
vendor performance was 18 months for projects smaller
than the SirsiDynix contract. As a result, the MIT Sloan
Management Review counsels readers not to outsource
critical IT functions and to spend more time planning. The
German Institute for Economic Research analyzed 43,000
German manufacturing firms from 1992-2000 and found
that outsourcing services led to poor corporate
performance, while outsourcing production helped [8].
While this is a manufacturing study rather than software
development, it suggests that outsourcing core
development may provide gains not seen otherwise.

Isolated Scrums Teams

Distributed Scrum of Scrums

Integrated Scrums

Figure 2 – SirsiDynix lines of new Java code
in thousands from 2003-2006.

Large software projects are very high risk. The 2003
Standish Chaos Report show success rates of only 34%.
51% of projects are over budget or lacking critical
functionality. 15% are total failures [20].

SirsiDynix sidestepped many of the hidden costs,
directly outsourced primary production, and used
Integrated Scrums to control the risk. The goals of both
increasing output per team member and increasing overall
output by increasing team size were achieved. Production
velocity more than doubled when they increased the size
of the 30 person North American development team and
added 26 people from StarSoft in December 2005.

6. Intent of the Integrated Scrums Model
An Agile company building a large product and facing
time-to-market pressure needs to quickly double or triple
productivity within a constrained budget. The local talent
pool is not sufficient to expand team size and salary costs
are much higher than outsourced teams. On the other
hand, outsourcing is only a solution if Agile practices are
enhanced by capabilities of the outsourced teams. The
primary driver is enhanced technical capability resulting
in dramatically improved throughput of new application
functionality. Cost savings are a secondary driver.

7. Context
Software complexity and demands for increased
functionality are exponentially increasing in all industries.
When the lead author of this paper flew F-4 aircraft in
combat in 1967, 8% of pilot functions were supported by

software. In 1982, the F16 software support was 45%, and
by 2000, the F22 was augmented 80% of pilot capabilities
with software [16]. Demands for ease of use, scalability,
reliability, and maintainability increase with complexity.

SirsiDynix was confronted with the requirement to
completely re-implement a legacy library system with over
12,500 installed sites across the globe. The large number of
developers required over many years in the midst of a
changing business environment threatened to obsolete
many feature requirements in the middle of the project. To
complicate matters further, the library software industry
was in a consolidating phase. Dynix started the project in
2002 and merged with Sirsi in 2005 to form SirsiDynix.

Fortunately, Dynix started the project with a scalable
Agile process that could adapt to changing requirements
throughout the project. Time to market demanded more
than doubling of output. That could only happen by
augmenting resources with Agile teams. StarSoft was
selected because of their history of successful XP
implementations and their experience with systems level
software.

The combination of high risk, large scale, changing
market requirements, merger and acquisition business
factors, and the SirsiDynix experience with Scrum
combined with StarSoft success with XP led them to
choose an Integrated Scrums implementation. Jack Blount's
past experience with Agile development projects at US
Data Authority, TeleComputing and JD Edwards where he
had used Isolated Scrums and Distributed Scrum of Scrums
models did not meet his expectations. This was a key factor
in his decision to structure the project as Integrated Scrums.

8. Forces

8.1. Complexity Drivers
The Systems and Software Consortium (SSCI) of large
defense contractors has outlined drivers, constraints, and
enablers that force organizations to invest in real-time
project management information systems. Scalable Scrum
implementations with minimal tooling are one of the best
real-time information generators in the software industry.

SSCI complexity drivers are described as [16]:
• Increasing problem complexity shifting focus from

requirements to objective capabilities that must be met
by larger teams and strategic partnerships.

• Increasing solution complexity which shifts attention
from platform architectures to enterprise architectures
and fully integrated systems.

• Increasing technical complexity from integrating stand
alone systems to integrating across layers and stacks of
communications and network architectures.

• Increasing compliance complexity shifting from
proprietary to open standards.

• Increasing team complexity shifting from a single
implementer to strategic teaming and mergers and
acquisitions.
SirsiDynix faced all of these issues. Legacy products

were difficult to sell to new customers. They needed a
new product with complete functionality for the library
enterprise based on new technologies that were highly
scalable, easily expandable, and used the latest computer
and library standards,

The Horizon 8.0 architecture supports a wide variety
of users from publication acquisition to cataloging,
searching, reserving, circulating, or integrating
information from local and external resources. The
decision was made to use Java with J2EE, a modular
design, database independency, maximum use of free
platforms and tools, and wide support of MARC21,
UNIMARC, Z39.50 and other ILS standards.

The project uses a three-tier architecture and
Hibernate as a database abstraction layer. Oracle 10g, MS
SQL, and IBM DB2 support is provided. The JBoss 4
Application server is used with a Java GUI Client with
WebStart bootstrap. It is a cross-platform product
supporting MS Windows 2000, XP, 2003, Red Hat Linux,
and Sun Solaris. Built-in multi-language support has on-
the-fly resource editing for ease of localization. Other key
technologies are JAAS, LDAP, SSL, Velocity, Xdoclet,
JAXB, JUnit, and Jython.

8.2. Top Issues in Distributed Development
The SSCI has carefully researched top issues in
distributed development [16], all of which had to be
handled by SirsiDynix and StarSoft.
• Strategic: Difficult leveraging available resources,

best practices are often deemed proprietary, are time
consuming and difficult to maintain.

• Project and process management: Difficulty
synchronizing work between distributed sites.

• Communication: Lack of effective communication
mechanisms.

• Cultural: Conflicting behaviors, processes, and
technologies.

• Technical: Incompatible data formats, schemas, and
standards.

• Security: Ensuring electronic transmission
confidentiality and privacy.
The unique way in which SirsiDynix and StarSoft

implemented an Integrated Scrums model carefully
addressed all of these issues.

9. Solution: Integrated Scrums
There are three roles in a Scrum: the Product Owner, the
ScrumMaster, and the Team. SirsiDynix used these roles.
Scrum itself solves the strategic distribution problem of

building a high velocity, real-time reporting organization
with an open source process that is easy to implement and
low-overhead to maintain [23].

For large programs, a chief ScrumMaster to run a
Scrum of Scrums and a chief Product Owner to centrally
manage a single consolidated and prioritized product
backlog is essential. SirsiDynix colocated the Scrum of
Scrums and the Product Owner teams in Utah.

9.1. Team Formation
The second major challenge is process management,
particularly synchronizing work between sites. This was
achieved by splitting teams across sites and fine tuning
daily Scrum meetings.

Figure 3 – Scrum teams split across sites. PO=Product

Owner, SM=ScrumMaster, TLd=Technical Lead.
Teams at SirsiDynix were split across the functional

areas needed for a integrated library system. Half of a
Scrum team is typically in Provo, Utah, and the other half
in St. Petersburg. There are typically 3-5 people on the
Utah part of the team and 4 or more on the St. Petersburg
portion of the team. The Search and Reporting Teams are
smaller. There are smaller numbers of team members in
Seattle, Denver, St. Louis, and Waterloo, Canada.

9.2. Scrum Meetings
Teams meet across geographies at 7:45am Utah time which
is 17:45 St. Petersburg time. Teams have found it necessary
to answer the three Scrum questions in writing and
distribute the answers by email before the Scrum meeting.
This shortens the time needed for teleconference on the
joint meeting and helps overcome any language barriers.
Each individual reports on what they did since the last
meeting, what they intend to do next, and what
impediments are blocking their progress.

Email exchange on the three questions before the daily
Scrum teleconference was used throughout the project to
enable phone meetings to proceed more smoothly and

SM
Dev
Dev
Dev

T Ld
Dev
Dev
Dev

Catalogue Serials Circulation Search Reporting

StarSoft
St. Petersburg,

SirsiDynix
Provo, Utah

PO PO PO

efficiently. These daily team calls helped the people in
Russia and the U.S. learn to understand each other. Most
outsourced development projects do not hold formal daily
calls and the communication bridge is never formed.

Figure 5 – Scrum Team meetings

Local sub-teams have an additional standup meeting
at the beginning of the day in St. Petersburg. Everyone is
using the same process and technologies and daily
meetings coordinate activities within the teams.

ScrumMasters are all in Provo, Utah or Waterloo,
Canada, and meet in a Scrum of Scrums every Monday
morning. Here work is coordinated across teams.
Architects are directly allocated to production Scrum
teams and all located in Utah. An Architecture group also
meets on Monday after the Scrum of Scrums meeting and
controls the direction of the project architecture through
the Scrum meetings. A Product Owner resident in Utah is
assigned to each Scrum team. A chief Product Owner
meets regularly with all Product Owners to assure
coordination of requirements.

SirsiDynix achieved strong central control of teams
distributed across geographies by centrally locating
ScrumMasters, Product Owners, and Architects. This
enabled them to get consistent performance across all
distributed teams.

9.3. Sprints
Sprints are two weeks on the SirsiDynix project. There is
a Sprint planning meeting that is the same as an XP
release planning meeting in which requirements from
User Stories are broken down into development tasks.
Most tasks require a lot of questions from the Product
Owners and some tasks take more time than initial
estimates.

The lag time for Utah Product Owner response to
questions on User Stories forces multitasking in St.
Petersburg and this is not an ideal situation. Sometimes
new tasks are discovered after querying Product Owners
during the Sprint with additional feature details.

Code is feature complete and demoed at the end of
each Sprint. If it meets the Product Owner’s functional

requirement, it is considered done. It is not deliverable
code and SirsiDynix wants to strengthen its definition of
“done” to include all testing. Failure to do this allows work
in progress to cross Sprint boundaries, introducing wait
times and greater risk into the project.

9.4. Product Specifications
Requirements are in the form of User Stories used in many
Scrum and XP implementations. Some of them are lengthy
and detailed, others are not. A lot of questions result after
receiving the document in St. Petersburg which are
resolved by in daily Scrum meetings, by instant messaging,
or by email.

Story for Simple Renewals Use Case - Patron brings item
to staff to be renewed.

Patron John Smith checked out "The Da Vinci Code" the
last time he was in the library. Today he is back in the
library to pick up something else and brings "The Da Vinci
Code" with him. He hands it to the staff user and asks for it
to be renewed. The staff user simply scans the item barcode
at checkout, and the system treats it as a renewal since the
item is already checked out to John. This changes the loan
period (extends the due date) for the length of the renewal
loan. Item and patron circulation history are updated with
a new row showing the renewal date and new due date.
Counts display for the number of renewals used and
remaining. The item is returned to Patron John Smith.

Assumptions:
• Item being renewed is currently checked out to the

active patron
• No requests or reservations outstanding
• Item was not overdue
• Item does not have a problem status (lost, etc)
• No renew maximums have been reached
• No block/circulation maximums have been

reached
• Patron's subscriptions are active and not within

renewal period
• No renewal charges apply
• No recalls apply
• Renewal is from Check Out (not Check In)
• Staff User has renewal privileges

Verification (How to verify completion):
• Launch Check Out
• Retrieve a patron who has an item already

checked out but not yet overdue
• Enter barcode for checked out item into barcode

entry area (as if it is being checked out), and press
<cr>.

• System calculates new due date according to circ
rules and agency parameters.

7:45am Provo, Utah

St. Petersburg, Russia 17:45pm

 Local Team
Meeting

Scrum Team Meeting

• The renewal count is incremented (Staff renewal
with item)

• If user views "Circulation Item Details", the
appropriate Renewals information should be
updated (renewals used/remaining)

• Cursor focus returns to barcode entry area, ready
to receive next scan (if previous barcode is still
displayed, it should be automatically replaced by
whatever is entered next)

• A check of the item and patron circulation
statistics screens show a new row for the renewal
with the renewal date/time and the new due date.

For this project, St. Petersburg staff liked a detailed
description because the system is a comprehensive and
complex system designed for specialized librarians. As a
result, there is a lot of knowledge that needs to be
embedded in the product specification.

The ways libraries work in St. Petersburg are very
different than English libraries. Russian libraries operate
largely via manual operations. While processes look
similar to English libraries on the surface, the underlying
details are quite different. Therefore, user stories do not
have sufficient detail for Russian programmers.

9.5. Testing
Developers write unit tests. The Test team and Product
Owners do manual testing. An Automation Test team in
Utah creates scripts for an automated testing tool. Stress
testing is as needed.
The test-first approach is encouraged although not
mandated. Tests are written simultaneously with code
most of the time. GUIs are not unit tested. Manual testing
is not currently completed during the Sprint leading to a
lot of open work in progress.

Component
Test
Cases Tested

Acquisitions 529 384
Binding 802 646
Cataloging 3101 1115
Circulation 3570 1089
Common 0 0
ERM 0 0
Pac Searching 1056 167
Serials 2735 1714
Sub Total 11793 5115

Figure 4 – Test Cases Created vs. Tested

During the Sprint, the Product Owner tests features that
are in the Sprint backlog. Testers receive a stable Sprint
build only after the Sprint demo. The reason for this is a
low tester/developer ratio.

There are 30 team members in North America and 26
team members in St. Petersburg on this project. The St.
Petersburg team has one project leader, 3 technical team
leaders, 18 developers, 1 test lead, and 3 testers. This low
tester/developer ratio and makes it impossible to have a
fully tested package of code at the end of the Sprints.
Fixing this problem could accelerate production in the
future.

9.6. Configuration Management
SirsiDynix was using CVS as source code repository

when the decision was made to engage an outsourcing firm.
At that time, SirsiDynix made a decision that CVS could
not be used effectively because of lack of support for
distributed development, largely seen in long code
synchronization times. Other tools were evaluated and
Perforce was chosen as the best solution.

StarSoft had seen positive results on many projects
using Perforce. It is fast, reliable and offers local proxy
servers for distributed teams. Although not a cheap
solution, it has been very effective for the SirsiDynix
project.

Automated builds run every hour with email generated
back to developers. It takes 12 minutes to do a build, 30
minutes if the database changes. StarSoft would like to see
faster builds and true concurrent engineering. Right now
builds are only stable every two weeks at Sprint
boundaries.

9.7. Pair Programming, Refactoring, and
other XP practices

StarSoft is an XP company and tries to introduce XP
practices into all their projects. Pair programming is done
on more complicated pieces of functionality. Refactoring
was planned for future Sprints and not done in every
iteration as in XP. Some radically refactoring has occurred
as the project approaches completion without loss of
functionality. Continuous integration is implemented as
hourly builds. On this project, these three engineering
practices were used with Scrum as the primary
methodology.

9.8. Measuring Progress
The project uses Jira project management software to give
everyone on the project a real-time view into the state of
Sprints. The Figure below shows the Sprint burn-down
chart and a snapshot of Earned Business Value on the
project along with a synopsis of bug status.

Figure 6 – SirsiDynix Horizon 8.0 Project Dashboard

Data from Jira can be downloaded into Excel to
create any requested data analysis. High velocity complex
projects need an automated tool to track status across
teams and geographies. The best tools support bug
tracking and status of development tasks in one system to
avoid extra work on data entry by developers. Such tools
should track tasks completed by developers and work
remaining. They provide more detailed and useful data
than time sheets, which should be avoided. Time sheets
are extra overhead that do not provide useful information
on the state of the project, and are de-motivating to
developers.

Other companies like PatientKeeper [22] have found
tools that incorporate both development tasks and defects
that can be packaged into a Sprint Backlog are highly
useful for complex development projects. Thousands of
tasks and dozens of Sprints can be easily maintained and
reviewed simultaneously with the right tool.

10. Integrated Scrums Model Resulting
Context

Collaboration of SirsiDynix and StarSoft turned the
Horizon 8.0 project into one of the most productive
Scrum projects ever documented. For example, data is
provide in the table below on a project that was done
initially with a waterfall team and then re-implemented
with a Scrum team [6]. The waterfall team took 9 months
with 60 people and generated 54000 lines of code. It was
re-implemented by a Scrum team of 4.5 people in 12
months. The resulting 50,803 lines of code had more
functionality and higher quality.

 SCRUM Waterfall SirsiDynix
Person
Months

54 540 827

Lines of
Java

50,803 54000 671,688

Function
Points

959 900 12673

FP per
dev/month

17.8 2.0 15.3

FP per
dev/month
(industry
average)

12.5 12.5 3

Figure 7 – Function Points/Developer Month for

collocated vs. distributed projects.
Capers Jones of Software Productivity Research has

published extensive tables on average number of function
points per lines of code for all major languages [10]. Since
the average lines of code per function point for Java is 53,
we can estimate the number of function points in the Scrum
application. The waterfall implementation is known to have
fewer function points.

Distributed teams working on Horizon 8.0 generated
671,688 lines of code in 14.5 months with 56 people.
During this period they radically refactored the code on
two occasions and reduced the code based by 275,000.
They have not been penalized for radical refactoring as that
is rarely done in large waterfall projects in the database
from which Capers derived his numbers.

Jones has also shown from his database of tens of
thousands of projects that industry average productivity is
12.5 function points per developer/month for a project of
900 function points and that this drops to 3 for a project
with 13000 function points [11].

The SirsiDynix project is almost as productive as the
small Scrum project with a collocated team of 4.5 people.
For a globally dispersed team, it is the most productive
large Java project ever documented at a run rate of five
times industry average.

11. References
1. Barthelemy, J., The Hidden Costs of Outsourcing.

MITSloan Management Review, 2001. 42(3): p. 60-69.
2. Beck, K., Extreme Programming Explained: Embrace

Change. The XP Series. 1999, Boston: Addison-
Wesley.

3. Beedle, M., et al., Scrum: A Pattern Language for
Hyperproductive Software Development, in Pattern
Languages of Program Design, N. Harrison, Editor.
1999, Addison-Wesley: Boston. p. 637-651.

4. Brooks, F.P., The Mythical Man Month: Essays on
Software Engineering. 1995: Addison-Wesley.

5. Brooks, R.A., Intelligence without representation.
Artificial Intelligence, 1991. 47: p. 139-159.

6. Cohn, M., User Stories Applied: For Agile Software
Development. 2004: Addison-Wesley.

7. DeGrace, P. and L.H. Stahl, Wicked problems,
righteous solutions: a catalogue of modern software

engineering paradigms. Yourdon Press computing
series. 1990, Englewood Cliffs, N.J.: Yourdon Press.
ix, 244.

8. Gorzig, B. and A. Stephan, Outsourcing and Firm-
level Performance, in DIW Berlin. 2002, German
Institute of Economic Research.

9. Gould, S.J., The structure of evolutionary theory.
2002, Cambridge, Mass.: Belknap Press of Harvard
University Press. xxii, 1433 p.

10. Jones, C., Programming Languages Table, Release
8.2. 1996, Software Productivity Research:
Burlington, MA.

11. Jones, C., Software assessments, benchmarks, and
best practices / Capers Jones. Addison-Wesley
information technology series. 2000, Boston, Mass.:
Addison Wesley. xxiii, 659 p.

12. Langton, C.G. Life at the Edge of Chaos. in Artificial
Life II, SFI Studies in the Sciences of Complexity.
1992. Held Feb 1990 in Sante Fe, NM: Addison-
Wesley.

13. Larman, C., Agile & Iterative Development: A
Manager's Guide. Agile Software Development, ed.
A. Cockburn and J. Highsmith. 2004, Boston:
Addison-Wesley.

14. Levy, S., Artificial Life: A Report from the Frontier
Where Computers Meet Biology. 1st ed. 1993, New
York: Vintage, Reprint edition. viii, 390.

15. Matisse Software, The Emergence of the Object-SQL
Database. 2003: Mountain View, CA.

16. Nidiffer, K.E. and D. Dolan, Evolving Distributed
Project Management. IEEE Software, 2005. 22(5): p.
63-72.

17. Poppendieck, M. A History of Lean: From
Manufacturing to Software Development. in JAOO
Conference. 2005. Aarhus, Denmark: EOS.

18. Senge, P.M., The Fifth Discipline: the Art and
Practice of the Learning Organization. 1990, New
York: Currency.

19. Sobek, D.K.I., A.C. Ward, and J.K. Liker, Toyota's
Principles of Set-Based Concurrent Engineering.
Sloan Management Review, 1999. 40(2): p. 67-83.

20. StandishGroup. 2003 Chaos Chronicles. 2003 [cited;
Available from:
http://www.standishgroup.com/press/article.php?id=2.

21. Sutherland, J., Agile Can Scale: Inventing and
Reinventing Scrum in Five Companies. Cutter IT
Journal, 2001. 14(12): p. 5-11.

22. Sutherland, J., Future of Scrum: Parallel Pipelining of
Sprints in Complex Projects with Details on Scrum
Type C Tools and Techniques. 2005, PatientKeeper,
Inc.: Brighton, MA. p. 1-27.

23. Sutherland, J. Scrum Evolution: Type A, B, and C
Sprints. in Agile 2005 Conference. 2005. Denver, CO.

24. Takeuchi, H. and I. Nonaka, The New New Product
Development Game. Harvard Business Review,
1986(January-February).

25. Takeuchi, H. and I. Nonaka, Hitotsubashi on
Knowledge Management. 2004, Singapore: John
Wiley & Sons (Asia).

26. Wood, W.A. and W.L. Kleb, Exploring XP for
Scientific Research. IEEE Software, 2003. 20(3): p. 30-
36.

27. Zanoni, R. and J.L.N. Audy. Projected Management
Model for Physically Distributed Software Development
Environment. in HICSS'03. 2003. Hawaii: IEEE.

