
0018-9162/03/$17.00 © 2003 IEEE March 2003 33

C O V E R F E A T U R E

Value-Based
Software
Engineering:
A Case Study

plex project. But it has absolutely nothing to say
about the stakeholder value of the system the pro-
ject is developing. It serves a purpose, but needs to
be incorporated into feedback control systems that
focus on the real stakeholder value being earned.

The value-based software engineering agenda,
described in the “Accounting for Value in Software
Engineering” sidebar, seeks to integrate value con-
siderations into current and emerging software
engineering principles and practices, while devel-
oping an overall framework in which they com-
patibly reinforce each other. One area that VBSE
addresses—value-based planning and control—
includes principles and practices for extending tra-
ditional cost, schedule, and product planning and
control techniques that also manage the value
delivered to stakeholders.

USING EARNED VALUE
Performing feedback control of a large software

project becomes difficult because hundreds of tasks
progress concurrently during development. Some
tasks will be ahead on budget and schedule,
others behind. Current earned-value systems let
managers of large projects achieve better control
of such complex situations.

Most software cost and schedule estimation
models include breakdowns of a project’s budget
and schedule by software component, development

The value-based approach to software
development integrates value considera-
tions into current and emerging software
engineering principles and practices,
while developing an overall framework
in which these techniques compatibly
reinforce each other.

Barry Boehm
Li Guo
Huang
University of
Southern California T he increasing pace of change in the infor-

mation technology field makes feedback
control essential for organizations to sense,
evaluate, and adapt to changing value
propositions in their competitive market-

place. Traditional project feedback control mecha-
nisms, such as earned-value systems, can effectively
control the development efficiency of relatively sta-
ble projects in well-established value situations. But
these mechanisms are insensitive to the project’s
return-on-investment factors, and they can lead to
wasteful misuse of an organization’s scarce resources.

Neglecting to monitor and control the value that
software adds was not too risky when business val-
ues changed slowly and software made minor con-
tributions to them. However, such neglect is in-
creasingly risky in today’s world of software-driven
product lines and tornado-driven changes in the
information technology marketplace—and will only
become more so. Many IT projects have faithfully
delivered products on or near their planned bud-
gets and schedules, only to find that the business
need for the product had largely disappeared, or
that competitors had already captured its planned
market niche.

A particular anomaly in the monitoring and con-
trol area, the Earned Value Management System,1

provides a useful technique for monitoring and con-
trolling the cost, schedule, and progress of a com-

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

34 Computer

phase, and task activity. A development team can
use these models to set up an earned-value system
in which it can consider the estimated cost for each
task as the value earned for the project when the
task completes.

The earned-value system works as follows.

1. The project team develops a set of tasks neces-
sary for the project’s completion, and associ-
ated budgets and schedules for each task.

2. Developers assign each task an earned value
(EV) for its completion, usually its task budget.

3. As a project proceeds, the project team reviews
three primary quantities at selected times T: the

budgeted cost of work scheduled (BCWS),
which equals the sum of the earned values for
all tasks scheduled to be completed by time T;
the budgeted cost of work performed (BCWP),
or project-level earned value, which equals the
sum of the earned values for all tasks actually
completed by time T; and the actual cost of the
project through time T.

4. If the BCWP equals or exceeds the BCWS, the
project is on or ahead of schedule.

5. If the BCWP equals or exceeds the project cost,
the project is on or ahead of budget.

6. If the BCWP is significantly less than the BCWS,
the project cost at time T, or both, the project

Developers perform much of current
software engineering practice and
research in a value-neutral setting, in
which they tend to do the following:

• treat every requirement, use case,
object, and defect as equally impor-
tant;

• express and practice methods as
largely logical activities involving
mappings and transformations;

• use earned-value systems to track
project cost and schedule, but not
stakeholder or business value;

• practice a separation of concerns
that confines software engineers’
responsibility to turning software
requirements into verified code; and

• set goals for improving productiv-
ity or correctness independent of
stakeholder value considerations.

Given that today’s software has a major
influence on system costs, schedule, and
value, and that software decisions inter-
twine inextricably with system-level deci-
sions, we can no longer afford to follow
this approach.

Further, value-neutral software engi-
neering principles and practices cannot
deal with most sources of software pro-
ject failure. Major studies such as the
Standish Group’s CHAOS report (www.
standishgroup.com) reveal that value-ori-
ented shortfalls cause most software pro-
ject failures. These shortfalls include lack
of user input, incomplete or changing
requirements, lack of resources, unrealis-
tic expectations, unclear objectives, and
unrealistic time frames.

Value-neutral methods also provide an

insufficient basis for an engineering disci-
pline. Most concerns expressed about the
adequacy of software engineering focus on
the shortfalls in its underlying science. But
it is difficult for a value-neutral approach
to provide guidance for satisfying the engi-
neering definition of making its products
useful to people, as this involves dealing
with different people’s utility functions or
value propositions.

A value-based software
engineering agenda

Progress has been made over the years
to integrate some value-oriented perspec-
tives into software engineering. This
includes approaches such as participatory
design, user engineering, cost estimation,
software economics, software investment
analysis, and software engineering ethics.
However, these approaches generally have
been treated as add-on band-aids to base-
line software engineering principles and
practices. The value-based software engi-
neering agenda1 includes the following
elements:

• Requirements engineering. Develop-
ing principles and practices for iden-
tifying a system’s success-critical
stakeholders, eliciting their value
propositions with respect to the sys-
tem, and reconciling these value
propositions into a mutually satisfac-
tory set of objectives for the system.

• Architecting. Reconciling system
objectives with achievable architec-
tural solutions.

• Design and development. Developing
techniques to ensure that the soft-
ware’s design and development in-

herit the system’s objectives and value
considerations.

• Verification and validation. Ensuring
that a software solution satisfies its
value objectives, and organizing
V&V tasks to operate as an invest-
ment activity.

• Planning and control. Extending tra-
ditional cost, schedule, and product
planning and control techniques to
include the value delivered to stake-
holders.

• Risk management. Developing prin-
ciples and practices for identifying,
analyzing, prioritizing, and mitigat-
ing risk.

• Quality management. Prioritizing
desired quality factors with respect
to stakeholders’ value propositions.

• People management. Stakeholder
teambuilding and expectations man-
agement, managing the project’s
accommodation of all stakeholders’
value propositions throughout the
life cycle, and integrating ethical con-
siderations into daily project practice.

• Principles and practices. These
include COTS-based systems, rapid
development, agile methods, high-
dependability systems, systems of
systems, and ethics.

This agenda has been actively pursued
by the Economics-Driven Software Engi-
neering Research (EDSER) community
(www.edser.org).

Reference
1. B. Boehm, Value-Based Software Engineer-

ing, to be published in ACM Software
Eng. Notes, Mar. 2003.

Accounting for Value in Software Engineering

is significantly overrunning its schedule, bud-
get, or both, and corrective action must be per-
formed.

Figure 1 summarizes the six earned-value feedback
process steps.

Earned-value system example
Figure 2 provides an example of how the earned-

value system can help assess the likely cost to com-
plete a software project and how to track its
progress. For simplicity, we assume that the pro-
ject starts with four sequential tasks: prototypes,
analyses, plans, and specs.

First, we assign an earned value to each task. We
estimate that the completion of prototypes will take
two months and $15,000, the analyses one month
and $10,000, the plans one month and another
$10,000, and the specs one month and $15,000.
This yields a cumulative earned value of $50,000
after successfully finishing these four tasks.

Table 1 represents the findings from a review per-
formed at the end of the fourth month to assess the
project’s status and actual cost. At this point, the
project was scheduled to complete the first three
tasks—prototypes, analyses, and plans—so the
cumulative BCWS (EVscheduled) equals $35,000.
However, only the prototypes and analyses are fin-
ished, which yields a BCWP (EVperformed) of only
$25,000.

In this case, since the BCWP of $25,000 is less
than the BCWS of $35,000, the project is behind
schedule. On the other hand, the actual cost is
$14,000 to finish the prototypes and $6,000 to com-
plete the analyses. Thus, the cumulative actual cost
of work performed is $20,000, which indicates that
the actual cost is below the budget for the first two
tasks.

In terms of the earned-value feedback process in
Figure 1, the BCWP is greater than cost, so no cor-
rective budgeting action is required. However, given
that the BCWP is less than the BCWS, the project
is behind schedule and needs corrective scheduling

action. This fix might involve slipping the sched-
ule or, if that is infeasible, rescoping the project to
fit within the available schedule. Techniques such
as the schedule as independent variable process2

can accommodate such corrective action.

REAL EARNED-VALUE FEEDBACK CONTROL
The earned-value management process generally

performs well when tracking how closely the pro-
ject is meeting its original plan. However, it be-

March 2003 35

Develop/
update plans,

BCWS

Perform
to plans

Determine corrective actions

BCWP≥
BCWS?

BCWP≥
cost?

Yes

Yes

No No

Table 1. Review of earned value and actual cost at the end of the fourth month.

Project Budgeted cost of work scheduled Budgeted cost of work performed Actual cost,
tasks (earned valuescheduled), in dollars (earned valueperformed), in dollars in dollars

Prototypes $15,000 $15,000 $14,000
Analyses 10,000 10,000 6,000
Plans 10,000 0 0
Specs 0 0 0
Total BCWS = 35,000 BCWP = 25,000 Cost = 20,000

Figure 1. Earned-value feedback process. The process first determines if the
budgeted cost of work performed (BCWP) is greater than or equal to the budgeted
cost of work scheduled (BCWS). It next determines if BCWP is greater than or
equal to cost. If both hold true, development proceeds; if either proves false, the
project team determines corrective actions.

50,000

40,000

30,000

20,000

10,000

Co
st

 (d
ol

la
rs

)

1 2 3 4 5
Time (months)

Budgeted cost of
work scheduled

Budgeted cost of
work performed

Project expenditures

Analyses

Specs

Plans

Prototypes

Figure 2. Earned-value system. This simple example starts with four sequential
tasks: prototypes, analyses, plans, and specs. The project team assigns earned
values to the tasks by estimating a completion time and cost for each one.

36 Computer

comes difficult to administer if the project’s plan
changes rapidly. More significantly, it neglects the
actual value the project is earning for the organi-
zation. A project can be tremendously successful
with respect to cost-oriented earned value, but an
absolute disaster in terms of actual organizational
value earned.

This frequently happens when the resulting prod-
uct has flaws with respect to user acceptability, oper-
ational cost-effectiveness, or timely market entry.
Thus, it is preferable to have techniques that sup-
port monitoring and control of the actual value the
project earns and the resulting return on investment:
ROI = (benefits − costs)/costs, adjusted for inflation
effects.

Earned-value monitoring and control
To start, we can use the project’s business case to

monitor the actual business value of its promised
capabilities. This involves a continuing update of
the business case to reflect changes in business
model assumptions, market conditions, organiza-
tional priorities, and progress with respect to
enabling initiatives.

In Making the Software Business Case,3 Donald
J. Reifer provides information and guidelines for
software business case analysis. Monitoring the
value of undelivered capabilities is difficult, how-
ever. Thus, this approach works best on a project
organized to produce relatively frequent increments
of delivered capability.

To formulate the business case, we must deter-
mine and reconcile the value propositions of the
project’s success-critical stakeholders. This makes
it necessary to identify these stakeholders and their
roles in realizing the project’s benefits.

An excellent technique for doing this is the DMR
Consulting Group’s benefits realization approach.4

Figure 3 shows an example of its centerpiece, the
results chain. This chain establishes a framework
linking initiatives that consume resources, such as
implementing a new sales-order-entry system, to
contributions—not delivered systems, but their
effects on existing operations—and outcomes,

which can lead either to further contributions or to
added value, such as increased sales.

The results chain links to assumptions, which
condition the realization of outcomes. Thus, in
Figure 3, if order-to-delivery time turns out to be
an unimportant buying criterion for the product
being sold, the reduced time to deliver the product
will not result in increased sales.

Software project members can use the results
chain as a framework for working with their clients
to identify additional nonsoftware initiatives that
may be needed to realize the potential benefits of
the software or IT system initiative. Using this
framework can also help identify additional suc-
cess-critical stakeholders who need to be repre-
sented so that they will buy into the shared vision.

For example, the initiative to implement a new
order-entry system to reduce the time required to
process must convince the salespeople that using the
new system features will be good for their careers.
For example, if the order-entry system is so effi-
ciency-optimized it doesn’t track sales credits, the
salespeople will fight using it. The salespeople also
must be trained to use the system effectively.

Further, the reduced order-processing cycle will
decrease the product delivery time only if additional
initiatives are pursued to coordinate the order-entry
system with the order-fulfillment system. Some clas-
sic cases where this didn’t happen include the late
delivery of Hershey’s Halloween candy and delayed
Christmas-toy shipments for Toys R Us.

Such additional initiatives must be added to the
results chain. Besides increasing its realism, this also
identifies additional success-critical stakeholders—
salespeople and order-fulfillment people—who
must be involved in the system definition and devel-
opment process. The expanded results chain
involves these stakeholders not just in a stovepipe
software project to satisfy some requirements, but
in a program of related software and nonsoftware
initiatives focused on value-producing end results.

Once the stakeholders agree on the initiatives, they
can elaborate them into project plans, requirements,
architectures, budgets, and schedules. The resulting

Initiative Outcome Outcome
ContributionContribution

Reduced time
to process order

Reduce order-processing cycle
(intermediate outcome)

Reduced time
to deliver product

Implement a new
order entry system

Increased sales Assumption

Order to delivery
time is an
important

buying criterion

Figure 3. Benefits-realization approach results chain. The chain links to assumptions, which condition the realization
of outcomes.

budgets establish the cost inputs to the business case.
A benefits analysis then determines the correspond-
ing benefits for the business case. The quantitative
part of this analysis includes the effects on the orga-
nization’s profit-and-loss bottom line, either in terms
of additional profit streams or cost savings.

The benefits analysis should also include a qual-
itative evaluation of benefits such as customer sat-
isfaction, corporate reputation, and supply-chain
controllability. For a public service organization,
the benefits analysis should determine quantitative
proxies for benefits wherever possible, such as
improved health-and-safety records, reduced ser-
vice delays and complaint rates, or high service-
recipient satisfaction ratings. Such evaluations are
often worth tracking for commercial organizations,
as they provide key competitive discriminators.5

Figure 4 shows the resulting value-realization
feedback process. The results chain, business case,
and program plans set the baseline in terms of
expected time-phased costs, benefit flows, returns
on investment, and underlying assumptions. As the
projects and program perform to plans, the actual
or projected achievement of the cost and benefit
flows and the assumptions’ realism may become
invalid, at which point the project team will need
to determine and apply corrective actions by chang-
ing plans or initiatives, making associated changes
in expected cost and benefit flows.

ORDER-PROCESSING EXAMPLE
Sierra Mountainbikes—a fictitious company rep-

resentative of two companies with less successful
projects—has an outstanding reputation for high
quality in their specialty area, mountain bicycle
manufacturing. However, an operations review
confirmed its retailers’ extreme dissatisfaction with
Sierra’s order-processing systems. Retailers were
encountering significant problems with delivery
delays and mistakes; poor synchronization between
order entry, confirmation, and fulfillment; and dis-
organized responses to problem situations. The
resulting crisis-management mode of operation

added to an already costly and inefficient order-
processing system.

To address these problems, Sierra entered into a
strategic partnership with eServices Inc. for joint
development of a new order-processing and fulfill-
ment system. The partnership will integrate the new
system with an upgrade of Sierra’s financial, pro-
duction, and human-resource-management infor-
mation systems. The strategic partnership is organ-
ized around both the system’s results chain and busi-
ness case, so that both parties share in the responsi-
bilities and rewards of realizing the system’s benefits.
Thus, both parties share a motivation to understand
and accommodate each other’s value propositions or
win conditions and to use value-based feedback con-
trol to manage the program of initiatives.

Benefits-realization results chain
Figure 5 shows the program’s overall results

chain. Compared to Figure 3, it adds new initia-
tives for order-entry processes, outreach, and train-
ing, and for order-fulfillment functions. Besides
involving its in-house stakeholders in those initia-
tives, Sierra has obtained commitments from its
three leading distributors to participate in defining
and beta testing the new system, and in evaluating
such expected outcomes as increased customer sat-
isfaction and ease of use. Planning how to moni-
tor these aspects of benefits realized led Sierra to
recognize the distributors as additional success-crit-
ical stakeholders to be involved in the system’s def-
inition and development.

Figure 5 is at about the right detail level for a sys-
tem of this complexity, being sufficiently detailed to
record the overall program vision and structure, and
to identify the success-critical stakeholders. It also
provides a sufficient framework for developing the
new system’s business case, and for feedback con-
trol of whether the initiatives are realizing the
expected benefits. As most of its critical assump-
tions are program-wide, these are recorded in Figure
5 as a general list of assumptions to be monitored,
rather than additional hexagons in the figure.

March 2003 37

Develop/update
business case;

time-phased cost,
benefit flows; plans;

assumptions

Perform
to plans

Determine corrective actions

Value
being

realized?
Assumptions

still
valid?

Yes

Yes

No No

Figure 4. Value-realization feedback process. As the project performs to plan, the actual or projected achievement of
the cost and benefit flows and the assumptions’ realism may become invalid, at which point the project team will need
to determine and apply corrective actions.

38 Computer

Costs, benefits, and ROI
Table 2 shows the overall development budgets

and schedules for the order-processing system. The
project uses an evolutionary spiral approach6

involving overall strategic plans for an initial oper-
ational capability (IOC) and full operational capa-
bility (FOC). Prioritized feature sets initialize the
content of the IOC and FOC, with an architecture
supporting growth to FOC and ease of dropping or
adding features as their nature or priorities change.

Additional key milestones include the life cycle
objectives (LCO) and life cycle architecture (LCA)
milestones used in the USC model-based system
architecting and software engineering (Mbase)
approach, the Rational unified process (RUP),7 and
the core capability drivethrough (CCD) milestone
in the schedule as independent variable specializa-
tion of Mbase and RUP.2

The Cocomo II cost estimation model8 also uses

these milestones to estimate the budget, effort,
schedule, and staffing level required to meet them.
Table 2 shows the milestone due dates, budgets,
and cumulative budgets derived for the order-ful-
fillment project using the Cocomo II estimates,
adjusted to cover the related business processes,
outreach, and training initiatives listed under soft-
ware, and the new purchased computer hardware
and COTS infrastructure software, listed under
hardware in the 30 Sept. 2004 IOC milestone. The
project team uses these values to monitor and con-
trol project progress with traditional earned-value
techniques, and to calculate the costs incurred to
determine the program’s return on investment.

The IOC will start development on 1 Jan. 2004.
It will be installed for beta testing with the three key
distributors on 30 Sept. 2004, and cut over as a
replacement for most of the old system on 31 Dec.
2004, at a cumulative investment cost of $4 million.

Table 2. Order-processing system schedules and budgets.

Cumulative
Milestone Due date Budget ($K) budget ($K)
Inception readiness 1 Jan. 2004 0 0
Life cycle objectives 31 Jan. 2004 120 120
Life cycle architecture 31 Mar. 2004 280 400
Core capability drivethrough 31 July 2004 650 1,050
Initial operational capability: software 30 Sept. 2004 350 1,400
Initial operational capability: hardware 30 Sept. 2004 2,100 3,500
Developed initial operational capability 31 Dec. 2004 500 4,000
Responsive initial operational capability 31 Mar. 2005 500 4,500
Full operational capability, core capability drivethrough 31 July 2005 700 5,200
Full operational capability, beta 30 Sept. 2005 400 5,600
Full operational capability, deployed 31 Dec. 2005 400 6,000
Annual operations and maintenance 3,800
Annual operations and maintenance, old system 7,600

Less time,
fewer errors

in order
processing

Increased
profits,
growth

Increased customer
satisfaction,

decreased operations
costs

New order-
fulfillment processes,

outreach, training

New order-
fulfillment

system

Fewer order-fulfillment
steps, errors

Less time, fewer errors
per order-fulfillment step

New order-entry
processes,

outreach, training

New order-
entry

system

Less time,
fewer errors per

order-
fulfillment

step

Faster
order-entry

steps, errors

Faster,
better

order-fulfillment
inputs

Increased
sales,

profitability,
customer satisfaction

Assumptions
� Increasing market size
� Continuing consumer satisfaction with product
� Relatively stable e-commerce infrastructure
� Continued high staff performance

Figure 5. Expanded order-processing system-results chain. Compared to the version shown in Figure 3, this version
adds new initiatives for order-entry processes, outreach, and training, as well as order-fulfillment functions.

An incremental release of the IOC responding to
the most cost-effective fixes and enhancements will
occur on 31 Mar. 2005. Concurrently, work will
start on the FOC enhancements, which the three
key distributors will also beta test, then cut over as
a full replacement for the old system on 31 Dec.
2005, at a cumulative cost of $6 million. Thereafter,
six-month increments and annual new releases will
be installed at an annual investment level of
$500,000. Table 3 shows the corresponding ex-
pected benefits for the current and new systems.

As Table 3 shows, estimates indicate that Sierra’s
current market share and profit margins will stay
roughly constant over the 2004 through 2008 period,
with annual profits growing from $7 million to
$12 million, if the new program is not executed. This
is a generous estimate, as the problems with the cur-
rent system would increase with added sales volume,
leading to decreased market share and profitability.
With the new system, profits due to increased sales
grow to $19 million by 2008, a gain of $7 million.

Table 4 shows the expected benefits to be reaped
with the new system, annually, for 2004 through
2008, with return on investment calculated as ROI
= (benefits − costs)/costs. For simplicity, the table
shows the costs and benefits in 2004 dollars to
avoid discounted cash-flow calculations, and does
not compound the 10 percent annual growth rate
in estimated market size, both for simplicity and
conservatism.

In Table 4, the columns from “Cost savings”
through “Return on investment” show the expected

improvements in market share and profit margins—
both from increased sales and decreased operational
costs—achievable with the new system and the
resulting ROI relative to continuing with the cur-
rent system. These numbers show that the expected
increase in market share—from 20 percent to 30
percent by 2008—and profit margins produce a 45
percent ROI by the end of the second year of new-
system operation in 2006: ROI = (benefits −
costs)/costs = (9.4 − 6.5)/6.5 = 0.45. The expected
ROI by the end of 2008 is thus 297 percent.

Table 4’s final four columns show expected
improvement in overall customer satisfaction from
2004 through 2008, with the last three categories
rated on a scale from 0 to 5. It also shows three of
this measure’s critical components: percentage of
late deliveries, ease of use, and in-transit visibility.
The project team identified the latter capability as
both important to distributors—if they know what
is happening with a delayed shipment, they can
improvise workarounds—and one that some of
Sierra’s competitors already provide. The team
expected Sierra’s 2004 through 2008 improvements
with the new system to improve the company’s 0 to
5 satisfaction rate on in-transit visibility from a low
1.0 to a high 4.6 and to increase its overall customer
satisfaction rate for order processing from 1.7 to 4.6.

Value-based monitoring and control
The expected benefits and business case in Tables

3 and 4, although valuable as a means of justify-
ing the program of initiatives, also provide a means

March 2003 39

Table 3. Order-processing system: Current versus new system.

Projections Current system New system

Date Market size ($M) Market share % Sales Profits Market share % Sales Profits

31 Dec. 2003 360 20 72 7 20 72 7
31 Dec. 2004 400 20 80 8 20 80 8
31 Dec. 2005 440 20 88 9 22 97 10
31 Dec. 2006 480 20 96 10 25 120 13
31 Dec. 2007 520 20 104 11 28 146 16
31 Dec. 2008 560 20 112 12 30 168 19

Table 4. New system: Expected benefits and business case.

Time Expected improvements Overall customer satisfaction

Change Cumulative Late
Cost in change in Cumulative Return on delivery Customer In-transit Ease

Target date savings profits profits cost investment (percent) satisfaction visibility of use

31 Dec. 2003 0 0 0 0 0 12.4 1.7 1.0 1.8
31 Dec. 2004 0 0 0 4.0 –1 11.4 3.0 2.5 3.0
31 Dec. 2005 2.2 3.2 3.2 6.0 –.47 7.0 4.0 3.5 4.0
31 Dec. 2006 3.2 6.2 9.4 6.5 .45 4.0 4.3 4.0 4.3
31 Dec. 2007 4.0 9.0 18.4 7.0 1.63 3.0 4.5 4.3 4.5
31 Dec. 2008 4.4 11.4 29.8 7.5 2.97 2.5 4.6 4.6 4.6

40 Computer

of tracking actual progress in realizing the benefits
and applying corrective action wherever

• the expected benefits are not being realized,
• the assumptions in the results chain shown in

Figure 5 are becoming invalid, or
• new opportunities may surface with a higher

payoff than the program being executed.

Figure 6 shows a sample value-based monitor-
ing capability for the order-processing system: a
simple, straightforward approach easily imple-
mented as a spreadsheet program. Some complica-
tions, such as present-value discounting of future
cash flows, are not included here, but they can eas-
ily be added in a spreadsheet program.

Most of the cells shown here compress two cells
of information into a pair of numbers. For each
pair, the number in italic shows the expected value
of the given elements at the given time, as expressed
in the expected benefits and business case in Tables
3 and 4. The number in roman type shows the
actual cost or benefit realized at the given time.
Cells that have only a single number with an aster-
isk show interim ratings provided by the early-user
distributors, based on trial use. They provide addi-
tional feedback on whether the project is on track
in meeting its qualitative goals.

For example, let’s look at the expected versus
actual outcomes at the end of the program’s first
year. In this hypothetical example, the project team
expected the deployed IOC to be finished by 31
Dec. 2004, but actually finished it early, on 20 Dec.
2004. The cost overrun would be about one per-

Op-Cost Market Annual ROI Ease
Cost Savings Share Sales Annual Profits Late Cust. of

Milestone Schedule ($K) % ($M) ($M) Profits Cum∆ % Deliv. Sat. ITV Use Risks/Opportunities

Life Cycle 3/31/04 400 20 72 7.0 12.4 1.7 1.0 1.8 Increased COTS ITV risk.
Architecture 3/31/04 427 20 72 7.0 12.4 1.7 1.0 1.8 Fallback identified.

Core Capa- 7/31/04 1050 Using COTS ITV fallback.
bility Demo 7/20/04 1096 2.4* 1.0* 2.7* New HW competitor;
(CCD) renegotiating HW

Software 9/30/04 1400
Init. Op. 9/30/04 153 2.7* 1.4* 2.8*
Capability (IOC)

Hardware 9/30/04 3500 $200K savings from
IOC 10/11/04 3432 renegotiated HW

Deployed 12/31/04 4000 20 80 8.0 0.0 –1.0 11.4 3.0 2.5 3.0 New COTS ITV source
IOC 12/20/04 4041 22 88 8.6 0.6 –.85 10.8 2.8 1.6 3.2 identified, being prototyped

Responsive 3/31/05 4500 300 9.0 3.5 3.0 3.5
IOC 3/30/05 4604 324 7.4 3.3 1.6 3.8

Full Op. 7/31/05 5200 1000 3.5* 2.5* 3.8* New COTS ITV source
Cap'y CCD 7/28/05 5328 946 initially integrated

Full Op. 9/30/05 5600 1700 3.8* 3.1* 4.1*
Cap'y Beta 9/30/05 5689 1851

Full Op. 12/31/05 6000 2200 22 106 12.2 3.2 –.47 7.0 4.0 3.5 4.0
Cap'y Deployed 12/20/05 5977 2483 24 115 13.5 5.1 –.15 4.8 4.1 3.3 4.2
Release 2.1 6/30/06 6250

Figure 6. Value-
based expected-
versus-actual-
outcome tracking-
capability matrix.
Among other vari-
ables, the matrix
tracks return on
investment (ROI)
and in-transit visi-
bility (ITV) for vari-
ous commercial
off-the-shelf
(COTS) products.
Numbers with an
asterisk indicate
ratings based on
early trial use.

cent: $4,041,000 actual versus $4,000,000
expected. A $200,000 savings in hardware and
COTS software acquisition would keep the over-
run from being serious.

On the other hand, customers’ knowledge that
Sierra had undertaken development of an improved
order-processing system helped the company land
some new purchase contracts that actually raised
its market share to 22 percent in the first year. Thus,
Sierra could record a $600,000 profit increase by
the end of 2004, instead of the zero profit increase
expected. The company also could repay $5.1 mil-
lion of the $6 million investment by the end of
2005. The new system decreased the late-delivery
rate to 10.8 percent versus the expected 11.4 per-
cent, and increased the system’s ease-of-use rating
to 3.2, versus the expected 3.0 by the end of 2004.

However, the new system’s in-transit visibility rat-
ing increased to only 1.6 instead of the expected 2.5,
pulling down the overall customer satisfaction rat-
ing to 2.8 versus the 3.0 expected. We can follow the
feedback control trail of this shortfall by looking at
the Risks/Opportunities column. Using the Life
Cycle Architecture milestone, which requires a risk
management plan to either resolve or cover all major
risks, the project identified a risk that TrackCorp,
the primary COTS vendor offering an in-transit vis-
ibility package, would back off from its marketing
promise to convert its ITV package to run on Sierra’s
selected Unix platform in early 2004. The project’s
fallback plan was to develop an interim in-house ITV
capability and search for alternative Unix-based
COTS ITV sources.

We can project other numbers by extrapolating on

this hypothetical example. By the 20 July 2004 Core
Capability Demo milestone, the project team esti-
mates that TrackCorp could not deliver a Unix ITV
package in 2004, if at all, and decides to use a fallback
strategy. The in-house ITV capability would slowly
increase the distributor’s ITV rating, but the project
team would achieve significant progress on improv-
ing the distributor’s ITV rating only when the search
for alternative Unix COTS ITV packages turns up a
viable new source at the end of 2004. By the end of
2005, that rating would increase to 3.3 versus the
expected 3.5, and the overall customer satisfaction
rating would increase to 4.1, versus the expected 4.0.

Thus, we can see that the Mbase/RUP life cycle
milestones, the DMR benefits realization approach
and results chains, the business case analysis, and
the value-based outcome tracking capability shown
in Table 5, provide value-based monitoring and con-
trol information that organizations can use to
proactively anticipate shortfalls and initiate correc-
tive action to recover from them. Organizations also
can use these tools to proactively pursue opportu-
nities to improve on a planned outcome, as when
the emergence of a new hardware competitor pro-
vides the opportunity to save on hardware costs and
compensate for a software cost overrun.

S everal challenges lie ahead for value-based
monitoring and control. These include inte-
grating advanced financial instruments such

as real options into the planning and control of soft-
ware-intensive systems.9 To support both agility and
discipline in controlling software projects, devel-
opers must learn to integrate the explicit informa-
tion in plan-driven feedback control methods with
the tacit information used in agile methods.10, 11

At the project and organization levels, integrating
feedback control of software-intensive projects, pro-
grams, portfolios, and organizations through tech-
niques such as the Experience Factory,12 Balanced
Scorecards,13 the Benefits Realization Approach,4 and
the CeBASE Method14 will become vital. Likewise,
integrating value-based methods into the full range of
disciplines involved in software engineering—
requirements, design, development, test, COTS inte-
gration, planning, and control—will be crucial. �

Acknowledgements
This article—based on research supported by the

National Science Foundation, the Department of
Defense Software Intensive Systems Directorate,
and the USC Center for Software Engineering’s
affiliates—draws heavily on the work of the EDSER

community and its leaders, particularly Hakan
Erdogmus, Warren Harrison, Donald Reifer, Mary
Shaw, and Kevin Sullivan.

References
1. US Air Force Systems Command, “Cost-Schedule

Management of Non-Major Contracts,” AFSCP
173-3, 1978.

2. B. Boehm et al., “Using the Spiral Model and MBASE
to Generate New Acquisition Process Models: SAIV,
CAIV, and SCQAIV,” CrossTalk, Jan. 2002, pp. 20-25.

3. D. Reifer, Making the Software Business Case, Addi-
son-Wesley, 2002.

4. J. Thorp, The Information Paradox, McGraw Hill,
1998.

5. W.C. Kim and R. Mauborgne, “Charting Your Com-
pany’s Future,” Harvard Business Review, June
2002, pp. 77-83.

6. B. Boehm and W. Hansen, “Understanding the Spi-
ral Model as a Tool for Evolutionary Acquisition,”
CrossTalk, May 2001, pp. 4-11.

7. P. Kruchten, The Rational Unified Process, 2nd ed.,
Addison-Wesley, 2001.

8. B. Boehm et al., Software Cost Estimation with
Cocomo II, Prentice Hall, 2000.

9. K. Sullivan et al., “The Structure and Value of Mod-
ularity in Software Design,” Proc. European Software
Eng. Conf. and ACM SIGSOFT Symp. Foundations
Software Eng., ACM Press, 2001, pp. 99-108.

10. J. Highsmith, Agile Software Development Ecosys-
tems, Addison-Wesley, 2002.

11. B. Boehm and R. Turner, Balancing Agile and Plan-
Driven Methods: A Guide for the Perplexed, Addi-
son-Wesley, 2003.

12. V. Basili, G. Caldeira, and H.D. Rombach, “The
Experience Factory,” in Encyclopedia of Software
Engineering, J. Marciniak, ed., Wiley, 1994.

13. R. Kaplan and D. Norton, The Balanced Scorecard:
Translating Strategy into Action, Harvard Business
School Press, 1996.

14. B. Boehm et al., “Achieving CMMI Level 5 Improve-
ments with MBASE and the CeBASE Method,”
CrossTalk, May 2002, pp. 9-16.

Barry Boehm is a professor in the Computer Sci-
ence Department at the University of Southern Cal-
ifornia. Contact him at Boehm@sunset.usc.edu.

Li Guo Huang is a PhD candidate in the Computer
Science Department at the University of Southern
California. Contact him at liguohua@sunset.usc.
edu.

March 2003 41

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

