
Ssh! We are adding a process…

Mark Striebeck, Google Inc.
mark.striebeck@gmail.com

Abstract

Google is very successful in maintaining its startup
culture which is very open and engineering-centric.
Project teams don’t have a project manager, but
organize themselves and communicate directly with all
stakeholders. Most feature decisions are made by the
engineering teams themselves. As well as this works
for products like search, gmail … it creates issues for
the AdWords frontend (AWFE) application. AWFE is
much more product management and release date
driven then other Google applications. This
presentation discusses how we carefully introduced
agile practices to coordinate the AWFE development
teams and made the process more efficient and
predictable.

1. Introduction

Google is known for its startup culture and its
efforts to maintain it. In terms of the Agile Manifesto
Google is almost entirely on the “left hand side” (with
the exception of “Working Software”). Traditionally,
project teams do not have a project manager, but
organize themselves and communicate directly with all
stakeholders. Even now, where Google has more then
6000 employees in numerous offices around the world,
Google is still very engineering driven. Many new
product ideas come from the 20% projects* of its
employees.

The overall mindset at Google is to have as little as
possible standard processes as possible. The reason is
that the individual engineering teams will know best
what is right for them. Upper management on the other
side has trust in its engineers that they would not abuse
this autonomy but do what is best for their project and
the company.

AdWords is different. Being a B2B application,
means that it needs much more business input/direction

* Every Google employee is encouraged to spend 20% of his/her time
on a personal project. This project should not be too closely related
to the employees’ actual work.

then other consumer-oriented products. Also, updating
AdWords is a much bigger effort then updating any
consumer product: all features have to be translated in
many languages, sales material has to be updated,
support has to be trained, and external communication
about major features has to be prepared (forums, blogs
and mails).

Therefore AdWords had a few standards:
• From the initial product idea, the product manager

together with a UI designer and usability specialists
creates almost final UI mockups. These mockups are
used for a final project review by senior
management and then given to engineering for
implementation.

• During the whole project lifecycle, the product
manager holds weekly meetings with all
stakeholders (engineering, QA, UI, support,
marketing). These core team meetings are the main
communication channel. All major product decisions
are made or at least discussed here. Lots of change
requests come from these core team meetings during
the project lifetime.

• Although, the core team sets initial release dates
(with input from engineering), the final release date
is determined by engineering progress and quality of
the code. Given the scale of AdWords (number of
users, business relevance, load, infrastructure); a
small bug can have very severe consequences.
Therefore features are rather delayed then released
with insufficient or even unknown quality.
This level of process worked well in the beginnings

of AdWords. But the AdWords product development
outgrew this ultra lightweight process
• The application code consists of more then

500KLOC
• The engineering team is distributed in 5 offices

worldwide – there are constantly 15-20 major
projects ongoing plus maintenance and small
improvements.
And the AdWords application and development

team is still growing…
The unpredictability of launch dates caused more

and more concern. Nobody wanted to lower the high

quality standards. But the initial release dates needed
to be more reliable and delays should at least be known
and communicated much earlier.

Because of its size and complexity AdWords has
fairly large management team (for Google standards).
In order to be effective the management team needed
much more visibility into the projects and their status.

Finally, the rate of change is very high in AdWords.
Teams who work on a project for a few months might
find that they have a lot of cleanup to do before they
can finally launch. Not so much because of code
integration issues (the AdWords team runs a fairly
comprehensive continuous integration suite) but
because of feature changes. Often, projects that run for
a long time have to play catch-up with all the feature
changes before they release. In a few cases this lead to
significant delays.

2. First agile attempts

Trying to introduce a process in a start-up
environment such as Google often meets resistance.
Because of the googley way of developing software,
many engineers simply do not believe that any formal
process can have a benefit but will only slow them
down.

When I took on my first projects at Google I was
just a few months with the company. The engineers did
not know me at all. But it was interesting to see how
the Google culture helped me here: A big part of
Google culture is trust. This goes through the whole
organization. And although I was new to Google and
AdWords, the engineers and PMs trusted me that I
would do the right things. Or better: they trusted the
people who hired me that I am someone who would do
a good job.

So, my strategy was to get as little involved as
possible in the actual coding part and to start with a
few practices that would just help us to track progress
and show issues. Then we would introduce individual
agile practices to fix such issues during development. I
decided to start with the following practices:
• A release backlog and burndown charts [1]. These

two tools provide high visibility into the
development progress for the project team, but also
outsiders. Using simple wiki pages to store the
backlogs allowed the engineers to update their
progress in very little time. I decided to measure the
burndown rate by tasks complete, not feature
complete. Measuring progress in feature complete
has many advantages but also forces a team to
change their development process a lot. It was one of

the areas where I decided to rather introduce this
practice later in order not to overwhelm the team.

• In past projects I made very good experience with
estimating features/tasks in points [2]. Especially in
an environment like AdWords, where engineers are
often interrupted by meetings or tech talks, real time
estimates are a problem. If the burndown graph tells
us that we are implementing 3 days of work per
week then it often leads to discussions what the team
is doing the other 2 days. Or people try to match
their updates to real days. Points are a good
abstraction layer that avoids any such discussion.

• Scope changes are included in a controlled way by
first estimating them, adding them to the backlog.
Here, the burndown charts helped tremendously to
get a quick assessment of the impact.

• A weekly development checkpoint meeting to plan
the next week and work on scope changes. These
checkpoint meetings were attended by the engineers,
QA, PM and UI. At this point I did not introduce
real iterations. My personal experience was that
changing to iteration-based development is a
significant change for developers and QA. It
sounded too heavy to introduce at this point.
For the adoption of these practices, I tried very hard

not to implement anything top-down but to get buy-in
from engineers and the product managers. The initial
changes sounded reasonable to the engineers. Because
I was managing several projects, I could not be too
closely involved in the development activities itself.
This probably worked to my advantage – the engineers
realized quickly that I would not try to tell them how to
do their job, but that I only structure the project in a
certain way which was not too intrusive. Also, one of
the goals was to keep the self-organizing character of
teams intact. After all, this is a big part of Google
culture and our agile adoption approach would have
failed if we had severely impacted it – no matter how
successful the projects would have been.

This approach also helped me to work with several
projects at the same time. Many meetings regarding
UI, features, design… took place without me. Only
when we discussed scope, scheduling or planned the
next steps, I was there and was usually leading the
meeting.

2.1. The guinea pig projects

Changes at Google are often done in some kind of

guerilla approach: one project team adopts something
new. If it works, other project teams get interested and
will try it as well. Therefore, we started only with two
projects:

Project A: This was a very new piece of functionality
which did not overlap with existing features. The UI
was fairly complex; the engineering team consisted of
new recent college graduates working in a remote
office.

Project B: This project was a simplified version of
AdWords. It was heavily integrated into existing
features (we basically had to think about every other
feature and had to integrate or disable it). The team
consisted of experienced engineers. Some of which
had already work for some time at Google, others were
new to Google).

2.2. The first process steps

In both projects, we used the UI mockups to

generate the release backlog by dissecting the screens
into individual features. This pre-development process
is very well established at Google and it seemed too
complicated to make this part more agile.

The release backlogs were stored in wiki pages
which made it very easy for engineers to update them.
From these wiki pages we automatically generated
burndown graphs to visualize the project progress. The
concept of giving status updates in work left and not in
work completed was initially strange to both teams.
But the engineers quickly realized the advantage.

As stated earlier I did not introduce iterations at this
time. Instead I installed weekly checkpoints with the
development team (PM, UI, Engineering and QA). In
these checkpoint meetings, we discussed progress,
additional feature requests and other issues. Additional
features were estimated and added to the release
backlog. I extended the burndown graphs and used a
variable floor to indicate the scope changes. The
graphs gave us quick feedback what the estimated
impact of these additional features was.

Table 1: Burndown graph with variable floor

Although I did not try to implement an immediate

testing of implemented features, I wanted to get away
from the purely phased approach where testing starts
after development is finished. To push for this, we
setup staging servers that were rebuilt on a nightly
base with the latest code. These staging servers were
used for testing the application but also for UI
walkthroughs*. Usually, they are performed towards
the end of a project when the system is nearly
complete. But because we staged the application early
on and implemented end-user features (from the UI
mockups) we could start with these UI walkthroughs
much earlier and gather important feedback for the
further development.

2.3. Issues to overcome

In both projects we faced similar issues:

Customer / Product Owner concept
Most agile processes have this role which is

responsible for features, prioritization and ultimately
scope vs. release date decisions. It is usually an
individual or team outside of the development team.
But at Google, many of these responsibilities rest with
the team leads. The product managers usually have
more then 10 projects at the same time. This does not
give them the bandwidth that the product owner role
requires. Also, they trust the tech leads and UI
designers enough that they will make good decisions
(often, when I asked a product manager for
prioritization of a feature, he turned to his tech lead
and simply asked “what do you want to do?”).

This gives the planning and prioritization meetings
a different dynamic. Often, the tech leads do not see
the need to make such decisions during the planning
meetings as they know that they will be involved
enough during development itself that they can make
such decisions at a later point. I usually drove the team
to make at least those decisions which are necessary to
create good effort estimates and priorities for the
backlog. I always wanted to leave the weekly
checkpoint meetings with good updates to the release
backlog.

Retrospectives

For me, frequent retrospectives [3] became such an
important part of software development that I tried to
install them in the weekly checkpoints from the

* UI walkthroughs are live demonstrations of the system with the
whole core team to gather feedback and uncover usability issues
early enough.

beginning. It would have helped a lot with improving
our process through constant feedback.

But both teams were not (yet) used to having a
formal development process. The weekly
retrospectives usually turned into a status report from
the last week but very little about the process itself.
This was aggravated by the engineering centric culture
at Google. When an issue comes up, most engineers at
Google only consider technology to fix it.

After a few weeks, I silently dropped retrospectives
from the weekly checkpoints. I decided to wait until
the teams embraced the concept of a development
process and that they own it and could change it to fix
problems.

Constant scope increase

In both projects, the scope increased significantly
(more then 30%) during development. Interestingly,
these scope changes were not the result of additional
feature requests by the product managers. Most
additional tasks were the results of oversights during
the release planning:
• The engineering team missed features in the UI

mockups when we created the release backlog
• Integrations into other AdWords features were

overlooked. Also, the rate of change in AdWords is
very high. During development others areas of the
application changed and we had to change our
integration as well.
Most of these additional tasks could not be down

prioritized for a later release but had to be added to the
release.

In both projects, this lead to several postponements
of the release date as no other feature could be dropped
from the first release.

Although, there was considerable frustration about
these delays, both project teams and management
appreciated that we at least knew about these
postponements early enough and not just the week
before release. The burndown graphs gave a good
visualization and the release backlogs made it easy for
everyone to understand what was left to be
implemented.

The backlog was handy as things came up over time and
as we dived deeper. One function was to not loose the line
items but more important it was useful for the team to see
how many un anticipated issues cropped up and have a
good snap shot in time.

Product Manager

2.4. Working with the remote team

As stated earlier, project A was implemented in a
remote location. The rest of the core team was in our
headquarters. Initially, I was concerned how that team
would react to my leadership – if they would
appreciate it as much as the other team or if the would
regard it as a heavy-handed approach from
headquarters.

To my surprise I did not encounter many issues
with this project. Only providing tools to get more
visibility into development progress and facilitating
planning meetings seemed to be the right level to give
the remote team enough room to work mostly
autonomously. Also, I could make myself very useful
in facilitating lots of communication with other
engineers in our headquarters. The team realized
quickly that I indeed tried to help the project progress
and not to control them remotely.

3. Adding agility – one practice at a time

3.1. Daily standup meetings

Both project teams initially rejected the idea of

daily standup meetings [4]. They were seen as an
unnecessary overhead.

But during development we discovered issues in the
weekly checkpoints from the past weeks:
• QA tested unfinished features or was not sure how to

test new features
• Engineers who worked on related features worked

on the same refactors. The AdWords engineering
team has a very healthy culture of constantly
refactoring the code. The downside is that two
engineers who work on related features often start to
improve the same code.

• Engineers could not continue with their
implementation because they depended on a task
from another engineer. Often enough, the other
engineer was not aware of this dependency.
It was clear to everybody that these issues could

have been avoided had the team communicated earlier.
At this point it became easy to convince both teams to
try out daily standup meetings and to include QA in
these meetings.

The first standup meetings were quite lengthy.
Everybody had a lot to talk about and had problems to
focus just on a quick status update (“done”, “to-do”,
and “issues”). But after a few days nobody had a big
baggage anymore and everybody realized that there is
not much to talk if you restrict yourself to the past 12
hours and next 12 hours. Several issues were resolved
or at least uncovered during these meetings. After a
couple of weeks, both projects did not need a reminder

anymore but made the standup meeting part of their
daily routine.

3.2. Small steps – Completely finishing a
feature/task

In project A, the progress looked very good.

Initially, we estimated 3 weeks for a set of screens.
When we did low-level estimates, we came to 40
points. After the first week, the team did 8 points – in
the second week 7.5 points. I looked as if the initial
estimate was too low and the team would need 5
instead of 3 weeks.

Interestingly, the tech lead of the team was
convinced that the screens could still be implemented
in 3 weeks (i.e. all remaining 24.5 points in 1 week!)
quote: “It just does not feel that much anymore”.

After week 3, the team was not done. The team
implemented another 9 points. The velocity looked
very stable: ~8 points per week.

To my big surprise, the tech lead announced in the
core team meeting once again that his team will be
done in one week…

It took me some time to learn to trust the burndown graph
and to question my gut feeling when a feature would be
finished.

Tech Lead

The fourth and fifth week showed a significant drop

in velocity: 4 points and 2.5 points! It turned out that
the team did not completely finish the tasks: tests were
not written, code was not reviewed (which is
mandatory at Google), features were not completely
integrated. This caused the burndown graph to go
down because we did not measure progress in finished
features, but in tasks.

This caused a further delay and the screens were
finally implemented after 7 weeks. This additional
delay caused some concern with the core team. To
avoid this situation I added a green/yellow/red color
coding to the burndown charts to indicate how many
tasks are new/started/finished. This made it very clear
if velocity was high because many features are
partially finished or if the team completely finished a
feature before moving to the next one.

Figure 2: Indicating started and finished tasks

The team responded very positively. It was quite a

shock for the engineers to see that up to 80% of all
tasks were in a ‘started’ state. They started to keep the
corridor of started tasks as small as possible.

Overall, this was a very healthy learning experience
for the team. It showed them the difficulty that we tend
to have when trying to estimate a release date instead
of deriving the release date from effort estimates and
progress. It also showed them that we can only
measure progress well, if we completely finish tasks
and not leave small bits and pieces around which
sometimes turn out to be much larger then we thought.

3.3. Spikes

In the weekly checkpoint meetings we often

discovered that tasks took much longer then initially
estimated. Or the team had problems with estimating a
new feature.

Initially, the engineers just wanted to pad estimates
for such unknown tasks. Often enough, these padded
estimates were much too high or still too low. And
everybody could see that they lowered the usability of
our burndown graphs significantly. So, we added in a
spike (an investigative task) to help determine what the
effort for the implementation would be. Especially
when the scope continued to grow, everybody realized
the value of getting a better estimate of implementing a
feature before actually starting to work on it.

4. Release experience

The two projects had somewhat different releases:

Project A)

The team had fixed many bugs already during
development, only few bugs were discovered in the
final integration test phase. It was a very smooth
launch.

Project B)

Because of the integration into all other AdWords
features, QA found many issues during development –
most of them through exploratory testing [5] (i.e. not
really tied to a particular product feature). The team
tried to keep the bug backlog under control but did not
want to fix all bugs. When we came close to launch,
we had to review the bug backlog several times and
down prioritize many bugs. Until a few days before
launch it was not clear if we could fix enough bugs to
release it.

At least the team did not encounter any issues that
required a complete redesign of some area – which
could have easily happened for such a far reaching
feature.

Still, the overall release experience was very

positive. Both projects were very successful in
production and had very few issues.

5. Feedback and next steps

I held post-mortem meetings with both projects. In
these meetings I focused the teams on listing positives
and negatives and not jumping to discuss solutions
immediately. From the overall list, the teams selected
the worst issues and best practices to keep:

Positive
• Project Management and tools (burndown charts and

backlogs)
• Early QA and availability of a staging server
• Teamwork and collaboration

Negative
• Unclear or non existent prioritization
• Felt as if team missed release date several times
• Too risky at end because of bug backlog (Project B)

It was very encouraging that both teams found the
overhead of maintaining and updating the release
backlogs worth doing.

Burndown charts made it easy to see when were making
progress, and gave us a nice sense of satisfaction and
completeness.

Engineer

And, furthermore that the process did not impact
the great teamwork and collaboration that Google
teams have. Also, the effort of maintaining a dedicated
staging server was appreciated. The engineers from
both teams were very positive about the early testing
and feedback by QA that the staging server afforded.

I think it took some time getting used to the approach of
testing so early in development, and also making sure
that QA and dev were on the same page. I think that our
daily standups and also having QA co-located with dev
has helped greatly here.

Engineer

6. The second version

From the feedback of the post-mortem meeting I
tried to modify the development process further to
address the worst issues.

In both teams I gave at this point a presentation
about a full Scrum process [6]. During the first
projects there were many tech talks at Google about
agile development (by internal and external speakers).
Both teams got very interested in it. They could see
that their practices fit into agile development but heard
a lot about other practices too. Also, the very positive
feedback of my project management style and tools
showed me that the engineers trusted me and my
guidance. In both teams we discussed which additional
practices to adopt:

Product/Release Backlog

To address the prioritization issue, I worked with
the product managers of both projects to organize their
requirements in prioritized lists. It took a little bit of
time for them to get used to it, but was not a major
effort. The core team members liked the backlogs a lot.
It gave them much more visibility and input into
development. Initially, there was still the desire to
make each feature high priority. But soon everybody
realized that even if a feature is not included in the
current iteration, it will still get done fairly soon.

Iteration based development

This was the hardest practice to introduce. Without
practical experience it is hard to explain why iterations
are better than scheduling the whole release at once
and adding to it when necessary.

But with the feedback about missing deadlines and
too many bugs, I could explain how an iteration based
approach would address these. The concept of not only
implementing but also testing and completely fixing
features within the same iteration sounded very
appealing to the engineers. Although, they were

somewhat skeptical of this high-quality approach, both
teams wanted to give it a try.

The teams soon realized the advantages. The
planning meetings became much more focused than
the weekly checkpoint meetings from the previous
projects. No time was wasted with discussing the same
feature for 5 weeks but never implementing it. Or to
discuss and design a feature that finally gets dropped.

We agreed to start with 2 week iterations. This
synchronizes well with the 2 week release cycle of
AdWords. We are finishing the iterations with the code
freeze for the next push. This means that a high-
priority feature that gets put on the product backlog
can be implemented and release within 4 weeks
without any interruption.

Figure 3: Synchronized development iterations and
release cycles

Retrospectives

After the previous projects, both teams had some
experience with a defined development process and
that they can influence/change it. I started the iteration
planning meetings again with a retrospective and this
time it was much more fruitful. Most contributions
were about how we develop our application and how
we can improve that.

Review of iteration features with core team

In the first projects, we reviewed the application by
clicking through it during the core team meeting and
collected some feedback. Now, with the iteration based
development we do these reviews at the end of each
iteration and only on newly implemented features. This
made the reviews more focused and gives us feedback
early enough so that we can integrate it in the next
iteration.

Testing tasks for features in same iteration

In order to test features in the same iteration as they
are developed in, we added testing tasks to the iteration
backlog. The QA engineers were asked to provide
effort estimates for these tasks so that they can be
included in the burndown chart.

Overall, the teams could see how these process
changes would address the negative feedback from the
post-mortem meetings. Both teams did not fully
understand how these practices would work together
but agreed to give it a try.

At this point I took on a third project where I
implemented the new process from the beginning. The
product manager of this team was from Project A, the
QA engineer from Project B. This made the adoption
much easier. Also, many people in AdWords had heard
about how I ran my projects and the barrier to try it out
was considerably lower.

6.1. The world is better, but …

Overall, the more agile processes worked really

well. Everybody noticed that the additional structure
comes with very little overhead and fixes many of the
issues that we had before.

We're still getting up to speed on the iteration-based
development. It's been nice for development, now that our
iterations are in sync w. AdWords code freeze cycle. It
was hard at first for UI/PM, but has gotten easier as PM
has assembled farther projecting roadmap, to give UI a
clue what will be needed for a coming iteration.

Push 2Code
Freeze –
Push 2

Translation
Deadline –
Push 2

Push 1Code
Freeze –
Push 1

Translation
Deadline –
Push 1

week 1 week 2 week 3 week 4 week 5 week 6
Pre-Iteration 1 Iteration 1

Pre-Iteration 2 Iteration 2Development
iterations

Release
cycles

Tech Lead

After a month or two, both product managers

realized that they need to establish a requirement
process that ensures that we not only implement little
bits and pieces at a time but keep the overall release.
This is an issue that I had with previous agile teams. I
could persuade the product managers to dissect their
releases into smaller chunks and prioritize them.

For these I created release burndown charts to track
when they will be finished. At this point I started to
measure progress on the release level in features
complete. At this point it was very easy to convince the
teams that this is the right measurement as it would
give us a much better guidance where the release is.

The teams first thought that it was strange to have
one iteration burndown chart and one release
burndown chart. But after a few iterations they saw the
benefit of both. The iteration burndown to guide actual
development efforts. And the release burndown to
guide the overall release planning.

An ongoing issue is the QA involvement. I
constantly have to push the QA engineers to test
features immediately after they are implemented. The
reason is that the QA engineers support several
projects. And the other projects are not agile, i.e. don’t
require much attention during development, but a lot
at the end. This made it hard for the QA engineers to
constantly spend a little bit of time each day on or
project to give the engineers the immediate feedback.
Right now, both teams question if it is worth the effort
to include QA tasks and effort estimates in our
planning as it does not seem to have any benefit.

For me, it seems like an extra task of updating a table
with data (QA estimates) that’s not of significance for
me. But I’d really like to know if it’s helpful to others.
So far, most of the estimates have been 0.1 points.

QA Engineer

Finally, the teams do not try to create a releasable
product at the end of the iteration (which is even
harder because of the QA issue mentioned above).
There are always tasks half implemented, not tested,
need review… For now, I am not pushing too hard on
this. The teams completely implement enough features
per iteration that we can release those with the next
AdWords update.

6.2. The project manager is dispensable

Recently, I went on a 3 week vacation. I was

concerned how the teams would continue with the
agile process during my absence and reminders and
reinforcements of our agile practices.

But it turns out that the teams embraced the process
enough to continue it even without any reinforcement.
Iteration planning meetings happened, backlogs were
created according to previous velocity, and daily
standup meetings took place …

7. Where are we going from here

With the success of three project teams we are now
prepared to make much bolder steps. Everybody in
AdWords had at least heard about the advantages of
the agile approach. Resistance at this point will be
much less.
• Establish backlogs and burndown charts as status

reporting standards in AdWords. Even if teams do
not adopt other agile practices, these practices are
easy to implement and provide a very good visibility
for the teams themselves but also management and
other outsiders.

• Other managers voiced interest. With a shadowing
approach I will guide them through the agile process
and try to give them enough experience to
implement agile practices in their projects by
themselves

• A few projects involve teams from several AdWords
departments (frontend, backend, NetAPI…). Such
projects always required much more management
attention. As great as Google engineers and tech
leads are, coordinating and synchronizing a teams
efforts with other teams often distracts tech leads too
much. We will either try to coordinate these teams as

one big team (one backlog, one burndown chart) or
use the “Scrum-of-Scrum” [7] approach.

• During the first months at Google I heard from other
departments who are using some agile practices or
full-on Scrum/XP processes. To support this effort
we started a grouplet* that focuses on agile
development. We just recently started this grouplet
and the initial response / interest was overwhelming
– not only from engineering, but also other groups
(QA, Product Management, UI, Usability)

• The UI development and usability part of our
development projects is still very frontloaded.
Almost all of this work is done before development
starts. A few usability experts and UI designers
showed interest in making this also part of the
iteration-based development.

8. Summary

With the help of an experienced agile leader (scrum
master, XP coach…) it was possible to carefully
introduce agile practices into Google - an environment
that does not have an affinity to processes in general.
Instead of introducing a grand new process, individual
practices could be introduced either to fix observed
issues or just to “try them out” – the development
teams realized the advantages very soon.

Along with these practices came a visibility into the
development status that gave the approach great
management support.

All this could be done without destroying the great
bottom-up culture that Google prides itself of. The
practices only affect how the projects are structured.
Design and implementation remains fully an
engineering responsibility. With some modifications,
we could even keep the very strong role of tech leads
and UI designers.

In keeping the great culture and self-organization of
the teams, I could easily manage several projects in
parallel. I could continue to rely on all core team
members to communicate effectively without
introducing any heavy processes.

[1] Controlchaos website - http://www.controlchaos.com/

about/burndown.php

* Google grouplets are cross-department groups which focus
on a specific area of the software development process (there
is a tech documentation grouplet, a build tools grouplet…)
The members of the grouplet use their 20% time for their
participation.

[2] Mike Cohn, “Agile Estimating and Planning”, pp. 35-42.

[3] http://www.retrospectives.com/

pages/whatIsARetrospective.html

[4] XP.org website - http://www.extremeprogramming.org

/rules/standupmeeting.html

[5] http://www.satisfice.com/articles/what_is_et.htm

[6] Controlchaos website - http://www.controlchaos.com

[7] Mountain goat website - http://www.mountaingoat

software.com/scrum/scrumteam.php

	1. Introduction
	2. First agile attempts
	2.1. The guinea pig projects
	2.2. The first process steps
	2.3. Issues to overcome
	2.4. Working with the remote team

	3. Adding agility – one practice at a time
	3.1. Daily standup meetings
	3.2. Small steps – Completely finishing a feature/task
	3.3. Spikes

	4. Release experience
	5. Feedback and next steps
	6. The second version
	6.1. The world is better, but …
	6.2. The project manager is dispensable

	7. Where are we going from here
	8. Summary

